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Abstract

Reduced-precision data formats are crucial for cost-effective serv-
ing of large language models (LLMs). While numerous reduced-
precision formats have been introduced thus far, they often require
intrusive modifications to the software frameworks or are rather
unconventional for widespread adoption across hardware vendors.
In this paper, we instead focus on recent industry-driven variants
of block floating-point (BFP) formats and conduct a comprehen-
sive analysis to push their limits for efficient LLM serving. Our
analysis shows that existing ultra low-bit BFP variants struggle to
provide reasonable language model performance due to outlier val-
ues in blocks. To address the outliers with BFPs, we propose MX+,
a cost-effective and non-intrusive extension designed for seamless
integration into the microscaling (MX) formats. MX+ builds on
the key insight that the outlier does not need to use its exponent
field in the element data type, which allows us to repurpose the
exponent field as an extended mantissa to increase the precision
of the outlier element. Our evaluation shows that MX+ achieves
significantly higher model performance compared to the 4-bit MX
format (MXFP4) with negligible storage overhead and slowdown,
thus offering a compelling alternative to MXFP4 or MXFP6 for
efficient LLM inference.
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1 Introduction

Emerging services that leverage large language models (LLMs)—
such as human-like chatbots and programming assistants—are in-
creasingly impacting our daily lives, making LLMs crucial work-
loads for both software and hardware vendors today. Efficiently
serving LLMs, however, presents significant challenges due to their
substantial demand for compute and memory resources. In re-
cent years, numerous low-bit quantization schemes and reduced-
precision data formats have been introduced to alleviate compute
and memory overheads. Yet, they typically require non-negligible
changes to the software codebase for additional operations—such
as per-channel scaling [63] and channel grouping [32]—or diverge
too far from conventional integer or floating-point representations
to be broadly adopted across computing platforms [15, 16].

To address these challenges, industry-leading companies, includ-
ing AMD, Arm, Intel, Meta, Microsoft, NVIDIA, and Qualcomm,
have recently collaborated to standardize an open and interopera-
ble family of data formats and introduced Microscaling (MX) data
formats [47], which build upon block floating-point (BFP) represen-
tations. However, there has been limited study on their effectiveness
in serving LLMs or on comparisons with other BFP variants from
the industry, such as Microsoft Floating Point (MSFP) [6] or shared
microexponents [7].

In this paper, we begin by investigating industry-driven BFP vari-
ants and understanding their implications for low-bit LLM inference.
Our analysis shows that MX achieves better language model per-
formance than other BFP variants that employ similar bit widths.
However, employing the 4-bit MX format (i.e., MXFP4) for both
weights and activations results in a substantial reduction in model
performance, limiting the maximum benefits of the MX formats.
We observe that this is due to a small number of values whose
magnitudes are significantly larger than others in LLM activations
(called outliers), which undergo large quantization errors when
converted into MXFP4.

To effectively address the outliers in BFPs, we propose the MX+
format, a cost-effective and non-intrusive extension to MX, which
enables LLM serving with both 4-bit weights and activations. The
MX+ design builds on two key insights. First, in MX formats, the
exponent of the largest magnitude value in a block is used for
determining a shared scale, allowing the natural identification of an
outlier element and its position within the block without additional
computation or extra hardware logic. Second, for the outlier element
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Figure 1: Industry-driven block floating-point formats.

in an MX block, we do not need to store its own exponent as it is
always set to the maximum representable exponent of the element
data type. This allows us to repurpose the exponent field to store
more mantissa bits for the outlier element, which greatly helps
increase the precision of the outlier in low-bit MX formats, where
only one or a few mantissa bits exist (e.g., MXFP4).

The non-intrusive design of MX+ makes it easy to integrate into
LLM frameworks and computing systems through both software
and hardware approaches. On the software side, we implement
MX+ and evaluate its accuracy and performance across various
LLMs using the MX emulation library [39], NVIDIA CUTLASS [56],
and the Triton compiler [57]. Additionally, we propose an approach
to reduce the performance overhead of software-based MX+ inte-
gration by incorporating architectural support into acceleration
units such as Tensor Cores in NVIDIA GPUs. Our evaluation shows
that MX+ offers a significant improvement in model performance
across a range of LLMs, achieving up to a +42.15% improvement for
the 4-bit MX format, with a negligible slowdown under software
integration or architectural support.

In summary, this paper makes the following contributions:

e We propose MX+, a non-intrusive extension to the MX for-
mats. MX+ offers improved representation of outliers with-
out additional user effort or complexity and achieves high
model performance even with low-bit quantization.

e We integrate MX+ into existing software libraries and demon-
strate that it incurs a marginal slowdown in LLM inference,
without hardware modifications, particularly when token
generation dominates inference time.

e We present a hardware design that enables direct MX+ com-
putation within Tensor Cores without making intrusive mod-
ifications to the dot product pipeline, delivering near-MX
performance while achieving higher model accuracy.

2 Preliminaries: Industry-Driven Block-Based
Data Formats

By mapping weights and activations from higher precision to lower
precision with coarser-grained representations, one can accelerate
computation with simpler yet higher-throughput compute units
while also achieving a more efficient use of memory bandwidth and
capacity. For instance, the widely used uniform, symmetric integer
quantization scheme maps a group of k floating-point numbers x¢
to b-bit integers x4 using the scale factor s, as shown below:

max (|xgl)
2b-1_1

x
; Xg= round(—f).
s
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Table 1: Concrete MX-compliant formats.

Name Element Data Type Bits Block Size (k) Scale Format
E5M2 32 E8Mo
MXFFS E4M3 8 32 ESMO
E3M2 32 E8MO
MXEPe E2M3 6 32 ESM0
MXFP4 E2M1 4 32 E8Mo
MXINTS8 INTS8 8 32 E8Mo

For integer quantization, dequantization involves multiplying the
scale factor with the integer values, s-xq.

Block floating-point (BFP) formats, such as MSFP [6], bear some
similarity to conventional integer quantization, but with the scale
factor (s) restricted to powers of two. This restriction enables hard-
ware to efficiently manage scaling or rescaling at a finer block (k)
granularity, thereby allowing for more accurate representations
of the original weight and activation tensors. Figure 1 provides a
comparison of several industry-proposed block-based data formats,
which we briefly explain below.

Microsoft Floating Point. Microsoft Floating Point (MSFP) is
a variant of BFP formats, which was deployed in Project Brain-
wave [14]. An MSFP block comprises k number of elements, each
with its own sign bit and mantissa bits, and a shared exponent used
by all elements in the block. In a typical use case of MSFP [6], for
instance, 16 elements in a floating-point tensor are grouped into a
block with an 8-bit shared exponent, which is set to the exponent of
the largest absolute value within the block. The mantissa of each el-
ement is obtained by right-shifting the original floating-point value
by the difference between the shared exponent and its original
exponent; therefore, there are no implicit leading bits in the MSFP
mantissa. Note that MSFP formats are named based on their total
bit width; for instance, MSFP12 has only four bits for the sign and
mantissa, resulting in an average bit width of 4.5 bits per element.
Shared Microexponents. Shared microexponents (SMX) data for-
mats [7] are a recent proposal similar to MSFP in that scale factors
are shared by a group of elements and restricted to powers of two.!
However, SMX employs a multi-level scaling approach, in contrast
to the single-level scaling in MSFP. In its typical use case of two-
level scaling [7], a group of 16 elements (k1=16) shares a first-level
scale factor s, which is an 8-bit shared exponent, while pairs of
elements (k2=2) within the group form a subgroup that shares a
second-level scale (sub-scale) factor ss, represented by a one-bit
shared microexponent for each subgroup.

Microscaling Formats. Microscaling (MX) formats [47] are an-
other recent proposal developed in collaboration with multiple
industry companies, with the objective of establishing open and
interoperable data formats. An MX block consists of 32 elements
(k=32) with a shared scale X, which is an 8-bit shared exponent,
similar to the one used in MSFP or SMX. However, unlike MSFP or
SMX, the element data type can be selected from five floating-point
and one integer encodings, as shown in Table 1.

The integer data type (i.e., MXINTS8) uses a two’s complement
encoding and has an implicit scale factor of 276 For MXFP formats,
each private element in an MX block has its own exponent bits,

'We denote the shared microexponents data formats as SMX in this paper to distinguish
it from the OCP proposal of Microscaling (MX) formats.
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Baseline (B) High-Bit (H) Moderate-Bit (M) Low-Bit (L)
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Figure 2: Perplexity with BF16 baseline (B), MSFP, SMX, and MX
formats. We compare each format with varying bit widths: high (H),
moderate (M), and low (L).

which makes each element effectively a floating-point number. In
MX, the shared exponent and the corresponding scale factor X can
be computed as follows:

shared_exp =max(llogz(|x¢])]) — emax,

X = zshared_exp’ (l)
where emax is the maximum representable exponent value of the
element data type. For instance, in MXFP4, the element data type
is FP4, and each element has an individual 2-bit exponent with the
exponent bias of 1. Thus, emax becomes 2 (i.e., 113 — 1).

3 Serving LLMs with Block-Based Data Formats

In this section, we first compare the model performance of various
LLMs when using the BFP variants discussed in Section 2. We
then investigate the root cause of performance degradations with
extremely low-bit formats and discuss how to better exploit low-bit
BFP for LLM serving.

3.1 Model Performance with BFP Variants

Figure 2 shows the perplexity of various LLMs across different
industry-driven BFP formats using the WikiText-2 dataset with the
sequence length of 2048.2 The baseline (B) uses Bfloat16 (BF16) as
the default data format and performs matrix multiplications and
element-wise operations in BF16, except for softmax, which uses
FP32. For the evaluation with BFP variants, we follow the computa-
tion flow outlined in prior work [7, 52]; BF16 tensors are converted
into MSFP, SMX, and MX for matrix multiplications, while element-
wise operations use the same precision as the baseline (i.e., BF16 or
FP32). We select the MSFP and SMX formats with average bits per
element similar to those in MXFP4 (L), MXFP6 (M), and MXFP8 (H).
The average bit widths of these BFP variants fall within the ranges
of4<L <45 6<M<6.5and825<H<9.

In general, MX outperforms or matches other BFP variants with
similar bit widths. For the high-bit (H) formats, all BFP variants
perform close to the baseline; while MXFP8 shows slightly higher
perplexity than SMX9 or MSFP16, this is due to its lower average bits
per element (8.25, compared to 9 and 8.5 in the other formats) and
the use of reserved NaN representations, which are not supported
by SMX or MSFP. In the moderate-bit (M) formats, however, SMX6

ZPerplexity is a widely used metric to assess the model performance of generative
LLMs; lower values indicate better performance.
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Figure 4: (a) Heatmap of the sample attention input tensors of Llama-
3.1-8B. (b) BF16 values and their MXFP4 and MXFP6 representations.
BF16 values are rounded to the second decimal place for brevity.

and MSFP14 begin to diverge, making them less effective for LLM
serving scenarios, while MXFP6 remains close to the baseline. This
is because, unlike SMX or MSFP, where exponents are shared among
some or all elements in a block, each element in MXFP has its
own exponent in addition to the shared one, allowing for more
fine-grained value representations. In addition, MXFP employs an
implicit leading 1 for normals, with sub-normals defined similarly
to IEEE-754 floating-point formats, resulting in a larger effective bit
width compared to other formats. However, when using the low-bit
MX format (i.e., MXFP4), perplexity also begins to deviate from
the baseline, even with MX. While it still significantly outperforms
SMX4 and MSFP12, this makes the low-bit MX format less suitable
for practical use in LLM serving, despite its potential for substantial
bandwidth savings and computational efficiency.

3.2 Analysis on Low-Bit MX Format

To understand the underlying reasons for the reduction in model
performance with the low-bit MX format, we conduct a further
analysis on MXFP4. We first evaluate the perplexity when only
either activation tensors (A) or weight tensors (W) are quantized
to MXFP4, while the others use BF16. Figure 3 shows that quantiz-
ing weights (A-BF16, W-MXFP4) leads to a negligible increase in
perplexity, whereas quantizing activations (A-MXFP4, W-BF16) sub-
stantially degrades model performance. This indicates that although
MX employs fine-grained scaling (i.e., 32 elements per block) to
reduce the impact of outlier values in tensors, low-bit MX does not
effectively mitigate this for activation tensors.

To gain deeper insight into the root cause, we examine the MX
blocks in the activation tensors. Figure 4(a) shows a heatmap of ac-
tivation magnitudes from Llama-3.1-8B, while Figure 4(b) presents
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two sample blocks with the original BF16 values and their MXFP4
and MXFP6 representations. Here, we refer to the absolute max-
imum value in an MX block as Block Max (BM), while the other
values are referred to as Non-Block Max (NBM).

We observe that blocks in which the BM is significantly larger
than the NBMs (e.g., the upper sampled block)—primarily due to
the presence of an outlier in the MX block—tend to exhibit high
quantization errors for two reasons. First, since MXFP4 allocates
only 1 bit for the mantissa, large-magnitude BMs are susceptible
to substantial deviation from their original values upon quanti-
zation (@). Second, the exponent of a BM dictates a block-wide
scale factor, as shown in Equation 1. As a result, when the BM is
large, the shared scale factor also becomes large, which forces the
other smaller elements (i.e., NBMs) to be represented less precisely
due to the shared scale. For instance, most NBMs are quantized to
zero after being divided by the shared scale factor (@). In contrast,
blocks without outliers (e.g., the lower sampled block) naturally
have relatively low quantization errors.

Figure 5 shows the contribution to MSE (Mean Squared Error)
from elements with the largest quantization error or from BM
elements. We can see that more accurately representing the BM
element in every MX block can reduce a significant portion of the
quantization error. While theoretically any of the 32 elements in
an MX block could have the largest error for the block, identifying
the largest error element in every block introduces computational
complexity without adding much benefit, as the BM element is
often the largest contributor.

In summary, while it would be ideal to precisely represent all 32
elements in a block, this is not likely feasible with MXFP4 due to
the limited number of mantissa bits. Instead, our analysis shows
that focusing on better representation of the BM element alone
can noticeably help improve model performance when using the
low-bit MX format.

4 MX+: Enhancing the MX Formats

As discussed in Section 3.2, the largest magnitude in an MX block of-
ten experiences the highest quantization error among the elements
within the block, which significantly hurts model performance par-
ticularly when the MX block contains an outlier. In this section,
we propose MX+, a cost-effective extension designed for seamless
integration into the MX formats for low-bit LLM serving.

4.1 MX+ Design

Our MX+ design revolves around three key considerations. First,
it should not interfere with the design goals of MX; the extension
needs to be managed solely within conversion kernels or hardware
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Binary Encoding

MXFP4: SEEM
MXFP4+ (NBM): SEEM Shared
MXFP4+ (BM): SMMM Scale
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Figure 6: Comparison of MX and MX+ encodings (S: sign, E: exponent,
M: mantissa). The BM element is boxed in blue. BF16 values are
rounded to the second decimal place for brevity.
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Figure 7: Data layout of MX+. We extend the mantissa bits instead
of storing exponent bits in BM. An additional 8-bit is assigned per
block to store the index of BM.

units for seamless integration with various frameworks, without
requiring additional effort from end-users. Second, the extension
needs to effectively handle outliers in blocks to mitigate quantiza-
tion errors while aligning with the MX specification [47]. Third, the
extension should not introduce large overheads in terms of storage
and runtime latency.

MX+ builds on two key insights. First, the BM element in each
MX block does not need to store its own exponent, as it is always set
to the maximum representable exponent of the element data type,
provided extremely small magnitude numbers below a threshold are
flushed to zero. This allows us to safely repurpose the exponent field
as an extended mantissa to more precisely represent the BM. Second,
the BM element is also naturally identified during conversion from
higher precision to MX for computing the shared scale. Thus, no
additional computation is required to identify the BM element in
each MX block.

Figure 6 illustrates an example of binary encoding for MXFP4 and
MXFP4+ using the sampled block presented in Figure 4. As shown
in the figure, the exponent field of the BM element is always set
to the maximum representable value (i.e., 112) in MXFP4. MXFP4+
repurposes these bits to store additional mantissa, thereby providing
a more accurate representation of the original BM value. Note that
MX+ does not alter the shared scale.

Similar to prior work [52], we flush values with extremely small
magnitudes to zero to simplify conversion and enable the MX+
extension. Specifically, if the exponent of the BM (| logz(BM)]) is
less than or equal to -127 + emax, we set all elements in the block
to zero. This is because, in such cases, the shared exponent gets
clamped at its lower bound of -127, which results in the exponent
field of the element data type being set less than emax. To represent
this case, we extend the shared exponent encoding by reserving a
special value: a biased shared exponent of zero indicates that all
elements in the block are zero.
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4.2 Data Layout of MX+

Figure 7 shows the data layout of MX+ for three possible types:
MXFP4+, MXFP6+, and MXFP8+, each of which is an extension
to MXFP4, MXFP6 (E2M3), and MXFP8 (E4M3), respectively. An
additional 8 bits are assigned to each MX block, where five bits are
used to store the index of the BM element within the block. The
remaining three bits are reserved, which can be utilized for further
optimizations or to support future MX specifications that define
formats with block sizes other than 32 elements.

NBM values are converted to conventional MX element data
types such as E2M1, E2M3, and E4M3, while the BM value is stored
with more mantissa bits such as EOM3, EOM5, and EOM7. We do
not explicitly store the exponent of BM since it will always be the
maximum of the given element data type (i.e., 2 for E2M1 and E2M3;
8 for E4M3), as shown in Equation 1. Thus, while using the same
bit width as NBMs, BMs are effectively represented as E2M3, E2M5,
and E4M7 for MXFP4+, MXFP6+, and MXFP8+.

Note that since all elements use the same bit width, MX+ does
not lead to unaligned memory access. This design also incurs a
negligible overhead in terms of compute and memory costs, as BMs
are already identified during conversion to the MX format. The
additional bits increase the average bit width by only 0.25 (e.g., from
4.25 to 4.5 for MXFP4). Similar to the shared scale [47], the index
metadata does not need to be stored contiguously with the element
data or the shared scale. It can also be compressed or pruned away
for the repeated values.

4.3 Potential Use of Reserved Bits

While MX+ greatly reduces block-wise quantization error by repre-
senting the BM element more precisely, NBM elements also con-
tribute to quantization error. As discussed earlier, since the shared
scale is determined by the BM, NBMs may be represented even less
precisely than they would be with their own scales. To show an
example of exploiting the reserved bits, we also consider a variant
of MX+, referred to as MX++, and evaluate its accuracy.

MX++ decouples the shared scale of NBMs from that of the BM
by utilizing the reserved bits, often enabling NBMs to be mapped
to a finer quantization grid compared to MX+. Specifically, NBMs
employ a shared scale that is smaller than or equal to the shared
scale for the BM, with the difference between their shared exponents
encoded into the reserved three bits in Figure 7. However, directly
applying the shared exponent computation from Equation 1 to
NBMs may increase quantization error because NBM elements
could saturate to the maximum magnitude of the element data type
after scaling. We thus define the smallest feasible shared exponent
e for NBMs to avoid saturation as follows:

e =maxz (Llogz(|xf[)]) — emax + 1,

where max; identifies the second-largest exponent in a given MX
block. Without the offset of 1, the first two terms would represent
the shared exponent of an MX block without the BM (Equation 1),
which may introduce additional error. Consider the example ele-
ments in Figure 6. Without the offset, e equals -3 (= —1 — 2, where
-1 is the exponent of 0.99), and the value 0.99 is scaled to 7.92
(= 0.99 = 273) and saturated to the maximum representable value of
6.0 in MXFP4. With the offset of 1, however, the value is scaled to
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3.96 and remains within the representable range. The final shared
exponent for NBMs is then determined by applying the clipping
function CLIP(x, {min, max}):

shared_exp,,.,, = CLIP (e, {shared_exp — 7, shared_exp}),

where shared_exp and shared_exppew denote the shared exponents
for the BM and NBMs in MX++. The lower bound ensures that
the difference from the BM’s shared exponent (shared_exp) fits
within 3 bits. The upper bound addresses the case where the ex-
ponents of the BM and the largest NBM are identical and thus e
exceeds shared_exp due to the offset. Revisiting the previous exam-
ple, shared_expnew of -2 enables the NBM value -0.39 to scale to
-1.56 and map to -1.5, whereas it was previously quantized to zero
with the shared_exp of 1.

5 Software Integration of MX+ on GPUs

MX formats are increasingly integrated into existing DNN accel-
eration systems with software and hardware support. In systems
lacking compute units for low-precision element data types in MX,
MX blocks are typically converted to a higher-precision format
supported by the hardware [21, 57, 61]. For example, data stored in
MXFP4 can be converted to FP16 for computation on Intel Granite
Rapids via software support [21]. In such scenarios, MX+ can also
be easily supported with a minor modification to the conversion
kernel as follows:

output; = (—1)% x gshared_exp o .

0<1i<32

if i = BM Index,

otherwise,

B (MX+ Addition)

where E;

2ei=b m;

()
where i and b denote the element index within a block and the
exponent bias of the given element data type. Also, s;, m;, and
e; represent the sign, mantissa, and private exponent of an input
element i, respectively. Note that the mantissa m; is captured dif-
ferently between BM and NBM elements in MX+. For instance, in
MXFP4+, the BM element has three effective bits for the mantissa,
while the NBM elements have only one bit.

When the systems are equipped with compute units that na-
tively support MX-compliant formats—such as Tensor Cores in the
recently announced NVIDIA Blackwell GPUs [41]—element data
in MX blocks can be processed directly within the compute unit
without the need for format conversion. In this section, we present
an approach to integrate the MX+ extension into a GPU system
that supports MX precision formats without requiring any hard-
ware modifications. For clarity, we focus on the scenario where
activations are represented in MXFP4+ and weights in MXFP4,
a configuration that achieves model performance comparable to
the case where both are in MXFP4+, as we discuss in Section 7.2.
However, the proposed approach can also be applied when both
operands use MXFP4+ or other formats such as MXFP6+.

5.1 Challenges of Handling BM on GPUs

NVIDIA’s Tensor Core performs matrix multiply-and-accumulate
(MMA) operations (D = AX B+C) for a predefined set of matrix tile
shapes (M x N x K) with specific input and output data types. Tensor
Core MMA operations are exposed to programmers through PTX
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Matrix B (64x8)

[CJ:nem [J:bm | T4
T5
Matching operands of BMs T6
7 T31
BMs required by TO for
the first two elements of matrix D W [
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T2|T6
MX+ Block T3|T7 31
T0 i 1| 12 | 13 T0 | 11 |12 | 13 T | 12 | 13
O
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Matrix A (16x64) Matrix D (16x8)

Figure 8: Elements of matrix A (MXFP4+), matrix B (MXFP4), and
matrix D (FP32) are distributed across the 32 threads (Tx where x is
a thread ID) in a warp.

instructions such as wmma.mma, mma, and wgmma.mma_async,
which are translated into device-specific machine code (i.e., SASS
instructions) such as HMMA (half-precision) and IMMA (integer).
We discuss this section based on the following MXFP4 mma PTX
instruction without loss of generality [46].
mma.m16n8ké64.block_scale.f32. e2m1.e2m1.f32 .ue8m0 D, A, B, C, Ea, Ep.
[ ——
FP4 Precision Scale Format

This instruction operates on matrices A and B with dimensions 16
X 64 and 64 X 8, respectively, and matrices C and D with dimensions
16 x 8. Matrices E4 and Ep, each with dimensions 16 X 2 and 2 X 8,
store the shared exponents of matrices A and B for two MX blocks
per row and per column, respectively.

When a warp executes a machine instruction for an MMA oper-
ation, all 32 threads within the warp collectively perform matrix
multiplication for a specific tile shape. To achieve this, each thread
in the warp holds a subset of elements, referred to as a fragment, of
the operand matrices in its registers.

Figure 8 illustrates how the elements of matrix A (MXFP4+ ac-
tivation), matrix B (MXFP4 weight), and the resulting matrix D
(FP32) are distributed across the threads in a warp for the 4-bit
mma.m16n8ké64 PTX instruction. For matrix A, each thread holds
a fragment in four 32-bit registers, with each register containing
eight 4-bit elements, while for matrix B, each thread holds a frag-
ment in two 32-bit registers, each containing eight 4-bit elements.
For matrix D, each thread holds four 32-bit elements in four 32-bit
registers. Note that each row of matrix A corresponds to two MX+
blocks, while each column of matrix B represents two MX blocks.

In MXFP4+, BM is effectively represented in E2M3, with the
private exponent of emax, Whereas the FP4 compute units in the
Tensor Core operate on E2M1. Thus, we cannot simply perform an
MMA operation with the input matrices A and B. To address this,
we decompose the BM value in each MXFP4+ block into the sum
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of two values, BMy and BM,, as follows:
BM = (—1)% x 2°max x ym[3:0]
= BMy + BMy,
where BMpy = (—1)° X 2°max x ym[3:2], @)
BMy = (—1)% x 26mx~2 % ym[1:0],

where um[3:0] denotes a mantissa representation with a leading one
explicitly stored in um[3], as in the x86 80-bit extended-precision
format [20]. As shown in Equation 3, BMy and BMj, are effectively
E2M1 and can be stored in FP4. Thus, we can process the BM
elements of matrix A using the following steps.

e Split BM into BMy and BMj..

e Replace BM with BMp, and perform an MMA operation.

e Multiply BMpy with the corresponding elements in matrix B
and accumulate the results into matrix D.

Note that additional computation is needed beyond the MMA
operation to obtain the correct output of matrix D (i.e., the third step
for BMy1). One possible approach to address this is to exploit CUDA
cores with FMA operations, while the Tensor Core performs an
MMA operation for the second step. However, we observe that this
results in more than a 5x slowdown in overall matrix computation
with MX+ and MX blocks on the RTX 5090 GPU, compared to
matrix multiplication with only MX blocks. This is because each FP4
element must be converted to higher precision (e.g., BF16 or FP32)
to perform FMAs in the CUDA core. Furthermore, this also requires
each thread to fetch the data from other threads via inter-thread
communication (e.g., warp shuffling). For example, in Figure 8,
thread 0 (T0) needs to fetch BMys in matrix A from threads 1 and
2 (T1 and T2) and the matching operands in matrix B from threads
1,2,5,and 6 (T1, T2, T5, and T6) to accumulate the multiplication
result into the first two elements of matrix D.

5.2 Using Underutilized Tensor Cores

To avoid costly conversions and reduce inter-thread communica-
tions, we instead perform an additional MMA operation for BMy
while reusing the registers of each thread. We observe that this
approach maintains performance in the decode stage where com-
pute units are underutilized, while introducing a modest increase
in inference time during the prefill stage (Section 7.3).

In detail, each thread first loads matrix fragments and the BM
index, then checks if it holds the BM element using its thread ID. If
a thread finds that it holds the BM, it replaces the BM with BM..
For example, in Figure 8, the first four threads (T@-T3) load the
same BM index for the first MX+ block of matrix A, which is 8, and
compare their thread IDs with L%ﬂdexj. T1 identifies the match
and replaces the BM with BMy,. This process is repeated across all
four registers that hold a fragment of matrix A.

To perform an additional MMA operation using BMy and its
matching operands, each thread requires a fragment of matrix A
in separate registers containing only BMy values, with all other
elements set to zero. To achieve this, we first assign each thread
to a single, exclusive MX+ block, from which it extracts the corre-
sponding BMy from the BM. For example, in the 16X64 matrix A
shown in Figure 8, which contains 32 MX+ blocks, each of the 32
threads in a warp processes a distinct block and retrieves its BMy
value. Threads then prepare their matrix A fragments in registers
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Figure 9: Overall design of hardware integration of MX+ into GPU.

Algorithm 1 Warp executing a sequence of MMA instructions
for matrices A (MXFP4+) and B (MXFP4).

1 > D[mm, nn] += A[mm, 128] X B[128, nn]

2 > Input A, B, and BMIdx are in shared memory
3 procedure MMALoop(A, B, BMIdx)

4 > Load operands to registers

5 a[mm, 128] « LoadFragment(A)

6 b[nn, 128] « LoadFragment(B)

7 bmldx[mm, 4] « Load(BMIdx)

8 > Replace BM of A with BMj,

9 a « ReplaceBM(a, bmldx)

10 > Fragments for additional MMAs

11 appm[mm, 128] < MakeFragment(A, bmlIdx)
12 for kin 2 do
13 kk «— k- 64

14 for iin [mm/ 16] do

15 il «— i-16

16 for jin [nn/ 8] do

17 Jj e Jj-8

18 mma.m16n8k64 d[ii, jjl, a[ii, kk], b[jj, kk], d[ii, jj]
19 > Perform additional MMA operation for BMy

20 if k == 1 then

21 mma.sp.m16n8k128 d[ii, jj], apmlii], b[jj], d[ii, jj]

for the additional MMA operation. Those requiring BMy values
retrieve them from the extracting thread and place them at the
corresponding BM positions within their fragments.

Algorithm 1 shows the procedure (MMALoop) for performing the
multiplication of MXFP4+ and MXFP4 matrices. ReplaceBM (Line 9)
identifies the BM in a and replaces it with BM} . MakeFragment (Line
11) extracts BMy from the BM and stores it in the BM position of
apu. Note that this process is amortized over multiple for-loop itera-
tions. Finally, a sequence of MMA operations is executed, including
an additional MMA (mma.sp.m16n8k128) for BMy (Line 21), while
reusing the registers that hold fragments of matrices B and D. We
perform a sparse MMA operation, which is twice as fast as a dense
MMA, because all elements in matrix A are zero except BMy.

6 Architectural Support for MX+

The software integration of MX+ presented in Section 5.2 avoids
conversion and reduces inter-thread communication overhead. How-
ever, it requires an additional MMA operation compared to the MX
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format. In this section, we explore the hardware integration of MX+
into GPU systems that support the MX format.

6.1 GPU Integration Overview

We present a hardware design that supports the MX+ extension
without making intrusive changes to the dot product engine (DPE)
in Tensor Cores. During an MMA operation, Tensor Cores gather
the input operands for matrix multiplication from different threads
in a warp. We capture BMs and their matching operands at the
DPE input, then perform BM-related operations using dedicated
low-precision scalar compute units. This keeps all modifications
confined to areas outside the core dot product pipeline in the DPE.
Since only a few BM-related operands need to be computed while
the DPE performs a dot product, both latency and area overheads
remain negligible. The following section provides a detailed de-
scription of this approach.

6.2 Tensor Core Integration

Figure 9 shows the overall Tensor Core design with MX+ hardware
integration. Our baseline Tensor Core architecture follows the de-
sign in prior work [50], with the difference that each warp executes
on a single Tensor Core containing 32 DPEs. Four threads form a
threadgroup that utilizes four DPEs, and two threadgroups com-
bine to form an octet. A warp consists of four octets, with threads
collaboratively loading operand matrices into intermediate buffers.
Each Tensor Core completes one FP4 mma.m16n8k64 every 16
cycles according to our benchmarking, which can also be inferred
from the RTX 5090 specification [45]. Since each thread in a warp
computes dot products for eight pairs of MXFP4 blocks to produce
four output elements during MMA execution (see Figure 8), we
configure each DPE to process one MXFP4 block pair every two
cycles; i.e., each DPE processes 16 FP4 input pairs per cycle. Each
pair of MXFP6 or MXFP8 blocks is computed every four cycles,
since FP8 sustains half the throughput of FP4, and FP6 matches FP8
throughput. The BM indices of the blocks currently being processed
(Apmidx and Bpidy) are supplied accordingly.
Hardware Extension. The DPE is extended with three main com-
ponents: 1) BM Detector, 2) Forward and Swap Unit (FSU), and 3)
BM Compute Unit (BCU). When the MX+ blocks and BM indices are
fed into the DPE, the BM Detector checks the BM indices (Agpmidy
and Bppidx) and activates the corresponding FSUs by sending them
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// Format: OMMA D, A, B, C, Ay, B,
OMMA.SF.16864.F32.E2M1.E2M1.E8 R12, R100.reuse, R104,
OMMA.SF.16864.F32.E2M1.E2M1.E8 R16, R100.reuse, R106,
OMMA. SF.16864.F32.E2M1.E2M1.E8 R20, R100.reuse, R108,

Metadata}

R12, RO.reuse, R3, URZ
R16, RO.reuse, R13, URZ
R20, RO.reuse, R15, URZ

{Shared Exponent

(a) Original SASS Instructions

MOV R1, R32 // Move Agya,
MOV R4, R48 // Move By, (R48) to Ré

OMMA.SF.16864.F32.E2M1.E2M1.E8.BM R12, R100.reuse, R104, R12,
MOV R14, R49 Move By, (R49) to R14

OMMA.SF.16864.F32.E2M1.E2M1.E8.BM R16, R100.reuse, R106, R16,
MOV R16, R50 Move By,
OMMA. SF.16864.F32.E2M1.E2M1.E8.BM R20, R100.reuse, R108, R20,

) to R1

RO.reuse, R3, URZ

RO.reuse, R13, URZ
(R50) to R16

RO.reuse, R15, URZ
(b) Extended SASS Instructions

Figure 10: (a) Original SASS instructions performing matrix multipli-
cation. (b) Extended SASS instructions with BM flag and additional
source registers for BM indices.

1-bit BMs and BMp signals. Each FSU consists of several multiplex-
ers and tri-state buffers, and shares a datapath connected to the
BCU. When BM (BM 4, BMp) signals are set, the FSU directs the BM
input and its matching operand to the BCU while forwarding zero
to the corresponding DPE input. This ensures that these inputs are
excluded from computation in the dot product pipeline. To support
FP6 and FP8, we can configure the FSUs such that those at even posi-
tions (2i, where i = 0, 1, ..., 7) share one datapath, while those at odd
positions (2i+1) share another. This enables the 4-bit inputs from
the adjacent FSU to be routed to the BCU as well. The forwarded
inputs are then processed in the BCU, as discussed below.

BM Computation within Tensor Core. As shown in Figure 9(c),
the BCU takes as inputs the BMs and their matching operands along
with the BM indices. It then performs the following computation:

Output = (Agm X BNpm) + (Bem X ANBM)»

where Agps and Bgy are the BMs of matrices A and B, and BNy gy
and Anppr are their matching operands. The first and second multi-
plication terms are conditionally left-shifted by §4 and dp in MX++,
which are the differences of the shared exponents between MX and
MX++ for matrices A and B. These shifts are encoded in the reserved
3 bits of the BM index. Note that these operations complete faster
than the DPE, which performs element-wise multiplications and
multi-level additions using an adder tree, and do not cause pipeline
stalls; i.e., the BM computation does not affect MMA instruction
throughput. Output is then added to the output of the adder tree
before being normalized and converted to FP32.

When the BM indices of A and B are identical, we simply swap

BnBMm with By and set BNy to zero, effectively computing only
one of the two identical terms in the formula. We design the mul-
tipliers to support sufficiently high precision to handle scenarios
where both the multiplicand and multiplier are BMs.
SASS Instruction Extension. Figure 10(a) shows SASS instruc-
tions performing an MXFP4 MMA operation, corresponding to the
MXFP4 mma PTX instruction described in Section 5.1. The register
identifier in the MMA instruction represents multiple consecutive
registers [50], with only the lowest register identifier encoded in
the instruction. For example, R12 in the first OMMA instruction rep-
resents a sequence of four registers: <R12, R13, R14, R15>. Note
that R@ and R3, which contain the shared exponents, are single
registers rather than register sequences.
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Figure 10(b) shows the proposed SASS instruction. The MMA in-
struction is extended with a BM control flag, which indicates whether
the input operands are represented in MX+. We extend the control
information by 1 bit for the additional flag; the SASS instruction
contains unused bits [22], which we similarly observed for Black-
well instructions through nvdisasm [43]. We also extend the MMA
instruction to take two additional source registers, each containing
two 8-bit BM indices for matrices A and B, following the register
layout of the shared exponent.

For instruction encoding of BM indices, we follow the scheme
used by sparse MMA instructions for the MX format. These instruc-
tions implicitly encode the register that holds ordered metadata
together with the register for the shared exponent of matrix A. The
two registers are paired to form a sequence, and a single register
identifier is encoded in the instruction. We adopt the same approach
by pairing the BM index register with the shared exponent register.
As illustrated in Figure 10(b), R32 and R48, each containing BM
indices for matrices A and B, are copied to registers R1 and R4, re-
spectively. In the subsequent OMMA instruction, R@ and R3 implicitly
represent the register pairs <R@, R1>and <R3, R4>.

7 Evaluation
7.1 Experimental Methodology

Algorithmic Implementation. We implement MX+ on top of
the CUDA extension of the MX PyTorch emulation library [39]
and evaluate model performance using pre-trained models from
Hugging Face [62]. Following prior work on applying MX formats to
DNNis [52], we apply MX and MX+ formats to all tensors involved in
any dot product operation during LLM inference, including those in
the language modeling head and KV cache. We use BF16 for vector
operations such as normalization.

Model and Workload. We evaluate MX+ across a diverse set of
large language models: OPT-66B [70], Llama-3.1 (8B and 70B) [13],
Mistral-7B-v0.3 [23], Phi-4-14B [1], and Qwen-2.5-14B-Instruct [64].
We measure task-specific accuracy (%) on the same Im-evaluation-
harness tasks used in prior work [52] and assess language modeling
performance using perplexity on the WikiText-2 [38] and C4 [10]
datasets. Additionally, we use Llama-2 models [58] of varying sizes
to measure inference time under MX+ integration.

Quantization Baselines. For model quantization, two primary ap-
proaches exist: post-training quantization (PTQ) and quantization-
aware training (QAT). Our evaluation on LLMs uses quantized
inference based on PTQ, which does not involve any re-training or
fine-tuning. We follow the drop-in replacement PTQ scenario de-
scribed in prior work [7], where a pre-trained BF16 model is directly
cast into MX or MX+ formats for evaluation—referred to as direct-
cast inference. To demonstrate that MX+ can also help in other
contexts, we additionally present the results with quantization-
aware fine-tuning on vision and CNN models in Section 8.2.

We assess model performance when using MX+ for both activa-
tions and weights, and compare each against its counterpart (i.e.,
MXFP4, MXFP6, and MXFP8). We use E2M3 and E4M3 for six-bit
and eight-bit formats, as prior work shows better accuracy with
higher mantissa bit configurations among the two variants in each
format [52]. We also evaluate MXFP4++ (applied to both weights
and activations) and A-MXFP4+ (MXFP4+ only for activations).
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Table 2: Direct-cast inference results of zero-shot tasks. Higher is
better for all tasks. All results are zero-shot except for {-marked
tasks in OPT-66B, which are 5-shot due to poor BF16 performance.

Model Format ARC ARC Lam- College Int. Juris-
easy challenge bada CS{ law{ prudence f

BF16 67.26 39.76 73.63 39.00 29.75 25.00

MXFP8+ 66.88 39.51 73.37 37.00 31.40 31.48

MXFP8 65.99 37.88 73.18 28.00 29.75 27.78

OPT MXFP6+ 66.58 40.10 73.55 36.00 28.10 24.07

66B MXFP6 66.08 38.82 72.66 34.00 31.40 26.85

MXFP4++  62.54 35.92 70.70 29.00 33.06 27.78

MXFP4+ 62.08 36.86 69.26 25.00 30.58 23.15

A-MXFP4+ 60.14 33.96 67.82 26.00 32.23 30.56

MXFP4 35.23 24.83 02.97 24.00 19.83 25.93

BF16 81.19 53.33 75.39 54.00 82.64 73.15

MXFP8+ 81.02 54.01 75.14 53.00 80.99 71.30

MXFP8 79.88 53.16 75.22 43.00 79.34 75.00

Llama-3.1 MXFP6+ 80.72 53.16 75.26 51.00 79.34 74.07

8B MXFP6 80.22 52.90 75.06 47.00 79.34 75.00

MXFP4++  70.71 46.16 68.10 34.00 70.25 59.26

MXFP4+ 70.29 45.65 66.83 38.00 66.12 54.63

A-MXFP4+ 68.56 41.47 66.83 41.00 56.20 50.00

MXFP4 49.41 29.69 40.17 26.00 23.97 23.15

BF16 86.49 64.85 78.91 64.00 89.26 85.19

MXFP8+ 86.78 64.25 79.22 63.00 89.26 86.11

MXFP8 87.04 64.59 78.71 65.00 89.26 86.11

Llama-3.1 MXFP6+ 85.40 63.91 78.73 63.00 86.78 85.19

70B MXFP6 85.27 63.14 78.42 64.00 88.43 85.19

MXFP4++  81.65 58.11 72.81 58.00 84.30 84.26

MXFP4+ 79.17 54.86 72.70 57.00 87.60 82.41

A-MXFP4+ 78.11 53.16 70.68 52.00 84.30 80.56

MXFP4 68.18 44.88 61.91 45.00 75.21 63.89

BF16 78.32 52.22 75.26 53.00 76.03 70.37

MXFP8+ 77.90 51.19 75.04 52.00 73.55 72.22

MXFP8 78.54 52.22 74.99 50.00 74.38 71.30

Mistral ~ MXFP6+ 78.45 51.88 74.85 51.00 76.03 70.37

7B MXFP6 78.32 52.73 74.93 52.00 76.03 68.52

MXFP4++ 75.67 49.06 71.43 42.00 68.60 57.41

MXFP4+ 74.20 47.78 70.79 45.00 67.77 65.74

A-MXFP4+ 74.28 47.78 72.40 40.00 60.33 54.63

MXFP4 69.57 43.26 65.17 31.00 47.93 43.52

BF16 72.90 55.97 72.50 65.00 90.91 83.33

MXFP8+ 72.94 56.23 72.13 67.00 90.08 81.48

MXFP8 73.36 56.74 72.13 66.00 90.08 84.26

Phi-4 MXFP6+ 71.63 55.46 71.82 67.00 89.26 82.41

14B MXFP6 72.26 55.46 71.78 68.00 90.08 83.33

MXFP4++ 71.63 55.46 69.88 63.00 90.08 78.70

MXFP4+ 72.47 54.95 67.94 64.00 90.08 82.41

A-MXFP4+ 72.31 54.95 68.87 65.00 88.43 83.33

MXFP4 72.35 53.24 64.43 58.00 86.78 84.26

BF16 81.52 62.46 72.87 71.00 87.60 87.04

MXFP8+ 81.27 61.77 72.85 72.00 88.43 87.04

MXFP8 80.81 61.69 72.48 72.00 88.43 87.04

Qwen-2.5 MXFP6+ 81.06 60.58 72.02 71.00 89.26 86.11

14B MXFP6 80.22 60.75 72.23 70.00 89.26 85.19

MXFP4++  78.91 57.68 67.88 67.00 88.43 85.19

MXFP4+ 77.15 54.61 66.12 66.00 87.60 82.41

A-MXFP4+ 75.72 52.90 65.42 69.00 81.82 82.41

MXFP4 69.57 48.89 51.89 48.00 71.07 68.52

MX+ Software Integration. We consider two use-case scenarios
for MX+ software integration, based on whether the system natively
supports MX formats: 1) data stored in MX formats are converted
to BF16 before computation, and 2) MX formats are computed di-
rectly within hardware. For the first scenario, we extend the Triton
compiler [57]—which already supports MX formats for matrix mul-
tiplication via BF16 conversion—by implementing conversion code
for Block Max (BM) (i.e., Equation 2) within the matrix multiplica-
tion kernel. We evaluate this using BF16 for activations and MXFP4
variants for weights on an NVIDIA RTX A6000 GPU [40], which
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Table 3: Perplexity of different models via direct-cast inference. The
sequence lengths are 1024 (Top) and 2048 (Bottom). Lower is better.

Model OPT Llama-3.1 Mistral Phi-4 Qwen-2.5
66B 8B 70B 7B 14B 14B
Dataset Wiki2 C4 |Wiki2 C4 Wiki2 C4 |Wiki2 C4 |Wiki2 C4 |Wiki2 C4
BF16 10.66 1090 | 6.97 9.40 3.17 7.22| 593 8.26| 7.49 14.82| 6.46 10.23
MXFP8+ 10.70 1092 | 7.06 9.51 3.23 7.26| 595 828 | 7.55 14.89| 6.53 10.29
MXFP8 11.20 1111 7.13 9.63 3.28 7.30| 6.00 832 | 7.57 14.91| 6.65 10.38
MXFP6+ 10.75 1094 | 7.10 9.58 3.36 7.34| 598 830 | 7.56 14.92| 6.61 10.36
MXFP6 1124 1119 | 719 970 343 7.39| 6.01 833 | 7.58 14.94| 6.72 10.44
MXFP4++ | 12,53 11.85| 9.87 13.08 5.34 894 | 6.57 897 | 828 15.93| 7.98 11.71
MXFP4+ 12.74 12.01 | 10.14 13.37 5.79 9.36 | 6.67 9.08 | 843 16.19| 831 12.19
A-MXFP4+| 13.92 13.64 | 11.03 14.64 6.03 9.65| 6.93 9.45| 852 16.36| 8.85 12.69
MXFP4 167.61 276.80| 27.69 33.80 9.15 13.72| 10.06 13.18| 9.47 17.45| 13.89 18.25
BF16 935 10.15| 6.27 8.62 281 6.44| 532 7.81| 6.67 13.45| 570 9.55
MXFP8+ 939 10.17 | 6.35 873 2.86 6.48| 534 7.83| 6.72 13.51| 5.76 9.60
MXFP38 9.82 1038 | 6.42 884 291 6.51| 536 7.86| 6.74 13.53| 588 9.69
MXFP6+ 943 10.19| 6.38 879 298 6.56| 535 7.85| 6.74 13.54| 583 9.66
MXFP6 994 1044 | 6.46 890 3.04 6.60| 538 7.88 | 6.75 13.56| 5.93 9.74
MXFP4++ | 11.17 11.18 | 9.22 13.10 4.81 834 | 590 852 | 7.36 14.49| 7.11 10.96
MXFP4+ 1135 1131 | 954 13.41 525 858 | 597 8.62| 7.48 14.73| 7.38 11.42
A-MXFP4+| 12.63 13.63 | 10.46 15.00 545 8.96 | 6.27 9.04 | 7.58 14.87| 7.92 11.93
MXFP4 209.83 306.33| 27.38 36.41 8.43 13.80| 9.96 14.40| 8.45 15.99| 12.28 17.46

lacks native MX support. For the second scenario, we implement
our algorithm in Section 5.2 using the CUTLASS library [56] and
integrate our matrix multiplication kernel into vLLM [31]. We then
evaluate its performance on an NVIDIA RTX 5090 GPU [45], which
provides native hardware support for MX formats.

MX+ Hardware Integration. We implement the components
added for the MX+ GPU integration in RTL and synthesize them
using Synopsys Design Compiler with a commercial 28nm tech-
nology node. To evaluate performance with MX+ integration, we
extend AccelSim [27] with the configurations similar to the NVIDIA
RTX 5090 GPU. Each instruction for an MMA operation is modified
to include additional access to the register file. We also model the
latency of adding the BCU output to the adder tree result for the
MMA instruction. The matrix multiplication traces are generated
using the CUTLASS library.

7.2 Language Model Performance

Table 2 shows the accuracy of the baseline BF16, MX, and MX+
for the lm-evaluation-harness tasks used in [52]. Overall, MX+
improves accuracy over its MX counterparts, with MXFP8+ and
MXFP6+ achieving improvements of up to 10.00 and 4.00 percent-
age points. The accuracy difference between MXFP4 and MXFP4+
is particularly substantial (up to +42.15%, excluding OPT-66B where
MXFP4 does not work), and even the case where MXFP4+ is used
only for activations (A-MXFP4+), while MXFP4 is still used for
weights, still significantly outperforms MXFP4. This indicates that
representing activation outliers becomes challenging in low-precision
formats, and MX+ effectively addresses this problem by represent-
ing BMs with higher precision. Importantly, MXFP4+ achieves this
while maintaining hardware and memory efficiency by represent-
ing all elements uniformly in four bits like MXFP4. Building on
MXFP4+, MXFP4++ further improves accuracy by also representing
NBMs more accurately, achieving up to +4.63% higher accuracy
compared to MXFP4+. Consistent with the accuracy results, Table 3
shows that both MX+ and MX++ always achieve lower perplexity
than the original MX formats across sequence lengths and datasets.
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Table 4: Matrix multiplication time with BF16 activation and MXFP4+
or MXFP4++ weight, normalized to the MXFP4 weight case.

Small Activations
M=8 M=16 M=32

Large Activations
M=1024 M=2048 M=4096

Normalized Time
N=4096, K=4096

MXFP4+ 1.08 1.07 1.08 1.04 1.01 1.01

MXFP4++ 1.08 1.09 1.10 1.04 1.05 1.04
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Figure 11: (a) Execution time breakdown with 64 output tokens. (b)
Normalized execution time across output tokens.

7.3 Performance of MX+ Software Integration

In this section, we evaluate two use-case scenarios of MX+ software
integration, as discussed in Section 7.1.

Conversion Before Computation. Table 4 presents the execution
time for matrix multiplication using BF16 activations and MXFP4+
(or MXFP4++) weights, normalized to the MXFP4 weight case. The
execution times reported in Table 4 include both BF16 conversion
overhead and BF16 MMA operations. Note that no additional MMA
operation is required for MXFP4+ (or MXFP4++) in this case. Ma-
trix multiplication kernels are generated from Triton [57] for the
dimensions spanning from low (small activations) to high (large
activations) data reuse scenarios. The results show that the BM
handling overhead during BF16 conversion becomes more pro-
nounced with smaller activations than larger ones. In high reuse
cases, BF16 MMAs dominate the overall matrix multiplication time,
while amortizing the conversion overhead. Note that, in both cases,
the additional BM handling required during conversion introduces
only a small performance overhead over the MX.

Direct Computation. In the following sections, we refer to the
aggregated matrix multiplication time during LLM inference in
vLLM for a given number of concurrent requests as execution time.
Figure 11(a) shows the execution time during the prefill and decode
stages for Llama-2-13B, with four requests of 1024 input tokens and
64 output tokens. The results show that A-MXFP4+ performs close
to MXFP4, while MXFP8 leads to a large slowdown. Since the de-
code stage that dominates the execution time is memory-bounded,
an additional MMA operation in A-MXFP4+ incurs a negligible
performance overhead (6.71%). A-MXFP4+ shows a moderate slow-
down in the prefill stage (1.54X), which comprises 18.78% of the
execution time. Figure 11(b) shows the execution time across dif-
ferent output tokens, normalized to MXFP4. A-MXFP4+ shows up
to a 1.13X slowdown, while MXFP8 shows up to a 1.85X slowdown
compared to MXFP4. As the number of output tokens increases in
Figure 11(b), the decode stage accounts for a larger portion of the
execution time, reducing the gap between MXFP4 and A-MXFP4+.

7.4

Performance. Figure 12 shows the execution time of MXFP4+ with
hardware integration during the prefill stage for a request with 2048

MX+ Hardware Integration
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Figure 13: End-to-end inference speedup over BF16 and average ac-
curacy of Im-eval-harness tasks on Llama-2-13B. A8W4 uses MXFP8
for activations and MXFP4 for weights.

input tokens, normalized to MXFP4. Overall, MXFP4+ shows a 0.38%
slowdown on average compared to MXFP4. This is because the BCU
computation does not affect the throughput of the instructions for
MMA operations. Extra register file access and increased instruction
latency have a negligible impact on performance.

Area and Power. Table 5 shows the area and power of the addi-
tional components for MX+ per Tensor Core. We add 16 FSUs, a BM
Detector, and a Compute Unit for each 32 DPEs in the Tensor Core.
Our design has an area of 0.020mm? and a power consumption
of 12.11mW. Note that directly comparing the area with the RTX
5090 is not feasible since we use a 28nm technology node while
the GPU is fabricated using a more advanced node (4nm). However,
we believe the area overhead would be even smaller if fabricated
using more advanced node. The area overhead of MX+ is much
smaller than recent quantization work that integrates hardware
components into Tensor Cores, such as RM-STC [19] and OliVe [15].
End-to-End Speedup. Figure 13 shows the speedup over BF16 in
vLLM and the average accuracy for Im-eval-harness tasks on Llama-
2-13B. We evaluate performance using four requests of 1024 input
tokens with either 8 or 64 output tokens, representing scenarios
where the prefill or decode stage respectively dominates inference
time. We compare MX formats with MXFP4+ and MXFP4++ under
hardware support, as well as A-MXFP4+ under software support.
For the long output length, A-MXFP4+ achieves a speedup close
to MXFP4 with 17.46% higher accuracy. We modify the CUTLASS
library to reduce unnecessary data loading and computation when
an output matrix dimension is smaller than the tile size of a thread
block. The library supports a single tile shape for A8W4, where
each thread block computes an M=128 and N=128 output tile [44],

Table 5: Area and power for MX+ support per Tensor Core.

Component Configuration Area [mm?] Power [mW]
Forward and Swap Unit 32 X (16 units) 0.004 0.59
BM Detector 32 0.004 2.86
BM Compute Unit 32 0.012 8.66
Total 0.020 12.11
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Table 6: Total quantization time normalized to MXFP4.

Input Tokens 32 128 512 1024 2048
MXFP4+ 1.00 1.00 1.03 1.05 1.05
MXFP4++ 1.05 1.04 1.13 1.15 1.15

Table 7: Perplexity on WikiText-2 via direct-cast inference.

Sch OPT Llama-2 Llama-3.1 | Mistral | Phi-4 | Qwen-2.5
cheme

6B | 7B 13B 70B | 8B 70B | 7B 14B 14B
BF16 | 935 | 547 489 332] 627 281 | 532 | 667 | 570
SMQ (INT4) 5E+4 | 3E+3 5E+3 1E+3 | 8E+3 2E+4 | 1E+3 | 32.50 3E+3
SMQ (MXFP4) 33.96 | 1044 9.94 6.03 | 21.00 738 | 972 | 813 10.13
QuaRot (INT4) 13888 | 811 607 412 | 985 3576| 632 | 7.55 9.71
QuaRot (MXFP4) | 13.49 | 1341 712 417 | 9.60 1947 | 6.63 | 7.63 8.17
Atom (INT4+INT8) | 9.42 | 594 521 3.66 | 743 422 | 570 | 7.16 6.77
ANT 1E+4 |180.81 146.11 32.83|927.90 1E+5| 4E+2 | 22.06 | 1E+2
Olive 6E+3 | 8627 3E+3 97.88 | 3E+2 4E+4 | 4340 | 1466 | 13.59
Tender 12.38 | 3647 55.08 1343 | 7074 3E+4 | 38.88 | 19.40 | 2E+2
MX-ANT 1035 | 610 533 379 | 811 437 | 588 | 7.17 6.81
MX-OliVe 2089 | 633 550 391 | 831 471 | 601 | 7.31 7.24
MX-Tender 958 | 632 547 384 | 942 1158| 622 | 7.25 7.63
MXFP4+ 1054 | 5.87 517 358 | 722 3.85| 565 | 6.97 6.66
MXFP4++ 1046 | 5.84 516 3.56 | 7.14 3.78 | 558 | 6.95 6.54

whereas M of the output matrix is 4 in the decode stage. Even with
this optimization, A8W4 performance remains close to MXFP8.

With hardware support, MXFP4+ delivers speedups comparable
to MXFP4, achieving 3.34X and 2.73X improvements over BF16 in
prefill and decode-dominant scenarios, respectively, while provid-
ing 20.17% higher accuracy. Despite requiring additional compu-
tation to find the second maximum magnitude during conversion,
MXFP4++ maintains competitive performance, running only 1.04%
and 1.00% slower than MXFP4. Table 6 shows the quantization time
across the input token lengths. MXFP4+ exhibits quantization times
similar to MXFP4, while MXFP4++ shows a small increase. Since
quantization accounts for only a small portion of inference time,
this overhead has a negligible impact on overall performance.

8 Analysis and Discussion

8.1 Comparison with Other Schemes

In this section, we compare model performance between MX+ and
other algorithm-only or algorithm-hardware quantization schemes.
For a fair comparison, we quantize matrix multiplication between
weights and activations, excluding language modeling head—the
intersection of quantized operations across the schemes.
SmoothQuant [63] rescales activation channels, while QuaRot [3]
rotates activation using orthogonal matrices to reduce the overall
magnitude. Atom [73] reorders channels and quantizes the channels
with outliers using higher precision (INT8). Table 7 shows that
SmoothQuant (SMQ) falls short in 4-bit precision, as discussed
in multiple studies [3, 32, 35]. We observe that QuaRot does not
completely remove outliers and performs worse than MXFP4+; the
magnitude of outlier values is not reduced after rotation (e.g., the
down projection layer in Llama-3.1). MX+ focuses on precisely
representing important outlier values, unlike QuaRot, as the fine-
grained grouping of MX already limits the impact of outliers to
other values. Atom shows comparable model performance as it
represents outliers in 8-bit but still performs worse than MX+.
ANT [16] and OliVe [15] use custom formats, while Tender [32]
groups channels of similar range and uses standard INT4. As shown
in the table, they suffer at 4-bit due to coarse channel-group or
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Table 8: Direct-cast perplexity of different weight formats under
BF16 activation with AWQ (A16W4) and MXFPS8 activation (A8W4).

Activation BF16 & AWQ MXFP8
Weight INT4 MXFP4 MXFP4+ | MXFP4 MXFP4+
Llama-3.1-8B | 6.67 6.99 6.64 | 740 6.97
Mistral-7B | 5.44 5.56 542 | 567 5.52

Table 9: Top-1 accuracy (%) on ImageNet.

Direct-cast A fine-tuni
Family Model FP32 trect-cas QA fine-tuning
MXFP4 MXFP4+ | MXFP4 MXFP4+
Vision DeiT-Tiny | 71.64 | 61.79 66.60 68.96 69.96
Transformer DeiT-Small | 79.82 | 73.82 77.29 76.96 77.44
CNN ResNet-18 | 69.18 49.28 62.66 65.76 66.72
ResNet-34 | 74.55 52.67 64.35 69.97 71.40

tensor-wise grouping. We extend the schemes to support finer-
grained grouping solely for accuracy comparison purposes, referred
to as MX-ANT, MX-OliVe, and MX-Tender, though this would no-
ticeably increase their runtime overhead. MX-Tender groups chan-
nels of each two rows at runtime. MX-ANT and MX-OliVe support
group-wise quantization of size 32. Both adaptively select per-group
data types for weights and per-tensor data types for activations. All
schemes use floating-point scaling factors calculated per group at
runtime. Nevertheless, MX+ still shows better performance, demon-
strating the effectiveness of representing BMs in high precision.

8.2 Broader Applicability of MX+

Weight-Only Quantization. While MX+ primarily targets the sce-
nario where we want to use low-bit precision for both weight and
activation tensors, it also provides the benefit for weight-focused
quantization scenarios. Table 8 shows the perplexity when employ-
ing 4-bit data formats for weights, with activations in either BF16
using AWQ [34] or MXFP8. AWQ is a weight-only quantization
method, which scales important weight channels to larger magni-
tudes to protect them under low-bit quantization. Although directly
using MXFP4 with AWQ degrades model performance, MX+ can
synergistically operate with AWQ. This is because scaling up the
important channels allows more important weight elements to be
identified as BM. As a result, the model performance is further
enhanced compared to the original AWQ (Weight INT4). When
using MXFP8 activations with MXFP4 weights, precise representa-
tion of weights can be more critical than activations, as it uses half
the number of bits. Using MXFP4+ under this setting noticeably
enhances the model performance, as shown in the table.
Other DNN Workloads. We also evaluate MX+ on Vision Trans-
former [59] and CNN models [18] for image classification tasks
on the ImageNet dataset [53]. Table 9 shows that the accuracy of
MXFP4+ is higher compared to MXFP4, with improvements of up
to +4.81% and +13.38% for the DeiT and ResNet models, under
direct-cast inference. As discussed in prior work [11, 35, 54, 72], we
observe that activation outliers are also present in these models
and are typically scattered across MX blocks. MX+ represents these
outliers more precisely, thereby improving accuracy.

We also perform quantization-aware (QA) fine-tuning and eval-
uate the effectiveness of MXFP4+ on the fine-tuned models. Com-
pared to direct-cast inference, the accuracy gap between MXFP4
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Table 10: Perplexity on WikiText-2 across non-FP microscaling for-
mats in a direct-cast setting.

Model | MXINTS8+ MXINT8 | MXINT4+ MXINT4
Llama-3.1-8B | 6.286 6.287 | 12.850 14.339
Mistral-7B | 5.321 5.321 | 6.841 7.156

Table 11: Direct-cast inference accuracy for NVFP4 and NVFP4+
(NVFP4 with extra precision for BM) on Im-eval-harness tasks.

ARC ARC Lam- College Int. Juris-
Model Scheme
easy challenge bada Ccs law prudence
NVFP4  68.81 45.73 56.51 30.00 63.64 53.70
Llama-3.1-8B
NVFP4+ 7231 46.25 69.36  35.00 71.90 56.48
. NVFP4  74.03 48.46 70.25  41.00 69.42 60.19
Mistral-7B
NVFP4+ 74.75 48.63 70.81 43.00 74.38 62.96

and MXFP4+ becomes narrower, as the fine-tuned models for image
classification tasks can achieve accuracy close to the FP32 baseline
even when using MXFP4. However, for more complex models and
challenging tasks where fine-tuned MXFP4 models cannot reach
FP32-level accuracy, the difference in accuracy between MXFP4
and MXFP4+ is likely to be more pronounced.

Applicability of MX+ to Non-FP Microscaling Formats. Be-
yond the three MXFP variants, the OCP MX specification defines
one additional MX-compliant format with integer element data
type: MXINTS8. Although MXINTS lacks an exponent field in its
element data type, the approach of adding extra precision to the BM
element could be similarly applied to MXINTS. For instance, the
INT8 encoding in MXINTS uses one sign bit, one integer bit, and
six fractional bits. In this configuration, emax equals zero in Equa-
tion 1 since element values are always smaller than 2. The shared
exponent becomes simply the exponent of the BM value, while the
BM element is represented in the +1.xxxxxx format. This allows us
to potentially make the integer bit implicit and use it as an extra
fractional bit for the BM element. Table 10 shows perplexity results
for this method applied to MXINTS8 and a hypothetical MXINT4 for-
mat (one sign bit, one integer bit, two fractional bits). For MXINTS,
increasing fraction bits from six to seven barely helps. In contrast,
MXINT4 benefits from additional fraction bits, similar to MXFP4+
or MXFP6+. If MXINT4 becomes part of the concrete MX-compliant
formats, this direction might be worth exploring as well.
Applicability of MX+ to NVFP4. NVIDIA recently introduced
NVFP4, a 4-bit floating-point format that bears similarity to MXFP4.
Both formats use FP4 (E2M1) elements with a shared scale per block.
However, NVFP4 differs by using a smaller block size of 16 elements
and an E4M3 scale factor. Table 11 presents the direct-cast accuracy
results for NVFP4. When compared to the results in Table 2, MXFP4+
and MXFP4++ perform better than or comparably to NVFP4. This is
because outliers are typically represented more accurately in MX+
due to the extra precision for BMs.

The MX+ extension can be similarly applied to NVFP4 since
both MXFP4 and NVFP4 map the BM as closely as possible to
the maximum representable magnitude in FP4 when computing
scale factors [42]. Similar to MX+, we extend the mantissa bits
of the BM element in NVFP4, except when the BM magnitude
is extremely small that the exponent in the element data type is
not set to maximum (i.e., when the shared scale becomes Xgqpr3 <
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Figure 14: Perplexity when representing top-k magnitude elements

of each block in MXFP6 while others in MXFP4 in a direct-cast setting.
Bar plot represents the percentage of outliers in MXFP6.

000000102). In such cases, we use the original NVFP4 representation
for the block. Note that the frequency of such cases can be reduced
through an extra per-tensor software scaling step, which shifts
values to larger magnitudes for per-block scaling. The extended
NVFP4, termed NVFP4+, has an additional 4 bits per block to store
the BM index, which can be packed with BM indices from other
blocks for byte alignment. As shown in Table 11, NVFP4+ achieves
higher accuracy than NVFP4.

Support for MX+ in Systolic Array Variants. Instead of perform-
ing matrix multiplications on GPUs, one can also consider using
fixed-function matrix pipelines such as TPU [25]. These pipelines
typically implement weight-stationary or output-stationary sys-
tolic array designs [25, 26], where each processing element (PE)
performs one MAC operation per cycle. Supporting MX+ in these
pipelines can be done similarly to the GPU integration by adding
FSUs and BCUs to the datapath. For example, in a representative
32x32 MX-compliant systolic array, an FSU is attached to each
PE, with a single BCU shared among the PEs in each column. In
the weight-stationary dataflow, the PEs in a column collectively
perform a dot product of an MX block pair. The BCU is located
below the systolic array and receives BM values and their match-
ing operands forwarded by FSUs, along with a partial sum. It then
computes the BM-related operands, adds the result to the partial
sum, and forwards the value to the accumulator. The process is
similar for the output-stationary dataflow. Each PE performs a dot
product of an MX block pair over 32 cycles, with FSUs collecting
BM-related operands. After these cycles, the operands and partial
sum are forwarded to the BCU. The updated partial sum is then
routed back to each PE where the accumulator resides.

8.3 Addressing Multiple Outliers in a Block

Although we keep the proposed algorithm simple to minimize
end-user overhead and enable seamless integration with various
frameworks, model performance can be further improved when
MX+ is optimized to capture outliers co-locating in the same blocks.
Outlier Analysis. We represent the top-k magnitude elements in
MXEFP6 for each block while keeping others in MXFP4. Figure 14
shows perplexity and the percentage of outliers represented in
MXFP6 within activation tensors. We identify outliers using the 3¢
rule following [15] and focus on activations, as weights generally
have a lower impact on model performance. The results show that
extending MX+ to store additional BM index to track up to two
outliers provides some gain, while additional outlier representation
shows diminishing returns. This is because most activation outliers
are represented in higher precision at top-2. To balance complexity
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Table 12: Direct-cast inference accuracy on Im-eval-harness tasks.
Reorder denotes MXFP4+ with channel reordering applied to query
and key matrices.

ARC ARC Lam- Coll Int. is-
Model Scheme am- LoTege n Juris
easy challenge bada CS law prudence
MXFP4+ 70.29 45.65 66.83  38.00 66.12 54.63
Llama-3.1-8B
Reorder  72.77 46.08 68.58  42.00 77.69 62.04
. MXFP4+ 74.20 47.78 70.79  45.00 67.77 65.74
Mistral-7B
Reorder  75.42 48.55 71.61 49.00 69.42 66.67

and model performance, we choose channel reordering as an op-
tional optimization on top of MX+ to explicitly separate outliers in
the same block. When applying channel reordering with MX+, the
perplexity and percentage closely follow that of top-2 as shown in
Figure 14, which we discuss in detail in the remaining section.
Scattering Outliers with Channel Reordering. As shown in
Figure 4, activation outliers are typically concentrated at the chan-
nel granularity. To allow more outliers to be identified as BM, we
can also explicitly scatter outliers across blocks via channel-wise
reordering. For instance, we first sort the channels of each acti-
vation based on the number of outliers. Channels with the most
outliers are then placed one in every 32 (i.e., block size) channels.
The remaining sorted channels are split in half, and we arrange the
lower half channels in the remaining places in descending order,
followed by the upper half channels in the same manner.

Table 12 shows the accuracy results for channel-wise reordering,
denoted as Reorder. The improvement stems from more precise
outlier representations. For example, the percentage of blocks with
multiple outliers among outlier-containing blocks decreases from
22.52% to 4.58% in a sampled query matrix after reordering. For
each task, we predetermine the channel ordering of query and key
matrices by averaging outlier counts per channel between the two
matrices using 10% of samples. Both matrices use identical channel
ordering to maintain mathematical correctness. Reordering is fused
with quantization by storing each quantized output at its reordered
channel address, making the reordering overhead negligible.

9 Related Work

Block-Based Data Formats for DNNs. Block floating point (BFP)
has been adopted for efficient inference and training of DNNs in
academia [5, 8, 12, 29, 36, 37, 65, 68, 71]. FAST [71] uses different BFP
precisions for different layers and training iterations during DNN
training. Bucket Getter [37] implements intermediate accumulators
in BFP PEs, each of which accumulates values within a similar expo-
nent range. In recent years, industry has also increasingly explored
BFP variants for efficient DNN processing [6, 7, 14, 30]. However,
defining different data formats across organizations increases end-
user overhead and software fragmentation. To address this, multiple
companies collaborated to standardize data formats and introduced
Microscaling formats [47], which are increasingly integrated into
computing systems via software and hardware support [2, 21, 41].
MX+ builds on this standard with a non-intrusive extension, making
it easily deployable across a wide range of platforms.

Outlier-Aware Quantization. Efficient execution of DNN work-
loads has been extensively studied in various contexts [4, 9, 24,
31, 33, 49, 51, 60, 69]. Quantization is one of the most widely used
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Table 13: Comparison of different quantization schemes.

Scheme | AWQ SqueezeLLM SMQ QuaRot OliVe Tender LLM-FP4 | MX+
Compute
Efficiency? X X v v v 4 v/ ‘ 4
Standard
Standard |-, v VA S ‘ v
High v v X X X X X ‘ v
Accuracy?

strategies for achieving efficient DNN execution [17, 55, 66, 67, 74],
and several previous studies focus on preserving the precision
of outliers, which is critical for maintaining model accuracy. In
the context of accelerating convolutional neural networks, OLAc-
cel [48] implements both 16-bit and 4-bit MAC units, with the 16-bit
units handling outlier computations. DRQ [54] employs an algo-
rithm to identify accuracy-sensitive regions in tensors and performs
high-precision computation on these regions. While effective, these
approaches rely on mixed-precision computation, which leads to
increased hardware complexity and unaligned memory access.
Table 13 compares MX+ with existing outlier-aware work for
LLMs. AWQ [34] and SqueezeLLM [28] are weight quantization
methods that perform computation in high precision after dequan-
tization. SmoothQuant (SMQ) [63] and QuaRot [3] reduce the mag-
nitude of activation outliers through rescaling or rotation but show
subpar accuracy at low bit widths because outliers are not com-
pletely addressed. OliVe [15] employs custom data formats, whereas
MX+ is based on standard formats while providing higher accu-
racy. Tender [32] groups activation channels with similar dynamic
ranges and achieves comparable accuracy to MXFP4, as discussed in
the paper. LLM-FP4 [35] uses a custom floating-point format with
channel-wise scales encoded into the exponent bias. We observe
that LLM-FP4 performs worse than MXFP4 in our experiments.

10 Conclusion

Serving LLMs requires substantial compute and memory resources,
and the MX data formats developed by leading industry companies
are increasingly being adopted to mitigate these challenges. In this
work, we investigate the implications of employing MX formats for
LLM inference and identify that model performance significantly
degrades under ultra-low precision due to quantization of activation
tensors containing outliers. Building on the insight that the block
absolute maximum element does not need to store its exponent in
the element data type, we propose MX+, a non-intrusive extension
to MX that repurposes the exponent field as an extended mantissa.
Without adding complexity, MX+ substantially improves model
performance across various precisions, with greater gains at lower
bit widths. It also enables straightforward deployment in software
integration scenarios with marginal overhead during inference,
which can be virtually eliminated with hardware support.
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