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Abstract—Large language models (LLMs) demonstrate out-
standing performance in various tasks in machine learning and
have thus become one of the most important workloads in today’s
computing landscape. However, deploying LLM inference poses
challenges due to the high compute and memory requirements
stemming from the enormous model size and the difficulty of
running it in the integer pipelines. In this paper, we present
Tender, an algorithm-hardware co-design solution that enables
efficient deployment of LLM inference at low precision. Based on
our analysis of outlier values in LLMs, we propose a decomposed
quantization technique in which the scale factors of decomposed
matrices are powers of two apart. The proposed scheme allows us
to avoid explicit requantization (i.e., dequantization/quantization)
when accumulating the partial sums from the decomposed matri-
ces, with a minimal extension to the commodity tensor compute
hardware. Our evaluation shows that Tender achieves higher
accuracy and inference performance compared to the state-of-
the-art methods while also being significantly less intrusive to the
existing accelerators.

Index Terms—Large Language Model; LLM Acceleration

I. INTRODUCTION

Large language models (LLMs) have demonstrated remark-

able performance across a variety of tasks in natural language

processing, including machine translation, sentiment analysis,

and even generating human-like text, as evidenced by recent

applications such as OpenAI’s ChatGPT and Google’s Gem-

ini [1], [19], [42], [56], [64]. The tremendous success of LLMs

can be largely attributed to their enormous model size, which

has seen substantial growth in recent years. For example, the

first version of GPT, which was introduced in 2018, had 117

million parameters, but the recently released GPT-4 is rumored

to contain more than a trillion parameters only after five years.

LLM inference has now become one of the most important

workloads in today’s computing landscape, but deploying and

serving LLMs poses a unique challenge because it requires a

significant amount of compute and memory resources due to

the massive model size. Quantization [11], [18], [50], [66] is

one of the most popular techniques to mitigate the resource

problem. By quantizing both weights and activations in LLMs

into low-bit integers, we can accelerate compute-intensive

operations such as matrix multiplication while leveraging high-

throughput integer tensor compute units in modern GPUs or

∗Equal contribution

TPUs, in addition to benefiting from memory capacity and

bandwidth savings.

However, it is quite challenging to quantize the activations

in LLMs, unlike convolutional neural networks or small Trans-

former models. When the LLM scales beyond a certain size

(around 6.7B parameters), extremely large magnitude values,

compared to others, appear in a few feature dimensions of

activations [11]. These outliers increase the quantization range,

thereby necessitating the use of larger bit widths in LLMs

compared to other DNN models.

As such, there have been recent efforts to effectively quan-

tize activations in LLMs using low-bit integers in both soft-

ware and algorithm-hardware co-design works. However, most

software-only works do not noticeably reduce the inference

time due to the overhead of complex algorithms or result

in a significant quantization loss at ultra low-bit precisions

(e.g., 4 bits) [11], [33], [65], [66]. Also, prior works dealing

with outliers via algorithm-hardware co-designs require either

mixed-precision/complex compute units [11], [44], [52], [70]

or custom/adaptive datatypes that are not natively supported

by commodity hardware [20], [21], [55].

In this paper, we propose Tender, an algorithm-hardware

co-design technique that efficiently executes LLMs in the

high-throughput integer pipeline without the need of mixed-

precision compute units or custom/adaptive datatypes. The

high-level idea behind Tender is to split the activation tensor

into several subtensors along the feature/channel dimensions

(e.g., columns in 2D), each of which contains the elements

with a similar range of values, effectively isolating the chan-

nels that contain outliers from the others. Each subtensor is

then quantized with a different scale factor, thereby reducing

the quantization error for the entire activation tensor compared

to the conventional per-tensor (or per-row) quantization vari-

ants.

While this has the great potential to enhance model per-

formance compared to previous LLM quantization works,

setting different scale factors for each subtensor requires

explicit and costly rescaling/requantization (i.e., dequantiza-

tion/quantization) when adding up the partial sums (i.e., outer

products) from matrix multiplications of the subtensors. Our

key insight is that we can avoid the explicit requantization step

by setting the scale factors with power-of-two relationships

between the decomposed subtensors and employing simple
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shifter logic in the tensor compute units. This approach pro-

vides us with two key benefits. First, it makes requantization

implicit, being it performed along with matrix multiplication

without involving explicit floating-point operations, leading to

negligible overhead for rescaling when accumulating the par-

tial sums. Second, it enables higher model performance while

being significantly less intrusive to the conventional tensor

compute units as it does not require complex hardware to

handle mixed-precision or custom datatypes, thereby offering

more flexible and practical applicability than other algorithm-

oriented schemes or outlier-aware architectures. While the

Tender algorithm can be implemented in software, its full

potential is realized through a custom accelerator design that

supports implicit requantization, which we discuss in Sec-

tion IV.

We apply our decomposed quantization technique to three

representative LLMs for evaluation. To measure the perfor-

mance improvement, we implement a cycle-level simulator

that models the Tender hardware with a detailed off-chip

memory timing model. We use simulation parameters based

on our RTL implementation, which is synthesized with a 28

nm process node. Our evaluation shows that INT8 quantization

via Tender offers better model performance than the state-of-

the-art and retains comparable model performance to the FP16

baseline (e.g., less than a 0.1 increase in perplexity for OPT-

6.7B, OPT-13B, and OPT-66B). In INT4 quantization, Tender

outperforms any other outlier-aware post-training quantization

(PTQ) techniques (up to 10988× lower perplexity). Also,

the Tender hardware achieves up to an average of 2.63×
speedup over the outlier-aware accelerators that we evaluate.

In summary, this paper makes the following contributions:

• We propose Tender, a PTQ approach for LLMs in pursuit

of hardware performance as well as model accuracy.

Tender achieves high performance and accuracy without

the need of mixed-precision compute units or custom

datatypes even for low-bit quantization.

• We propose the “power of 2” channel decomposition

rule, which effectively reduces the quantization error by

harmonically working with LLM activation tensors.

• We present the Tender accelerator design, which over-

comes performance challenges in splitting activations

along the channels and enables implicit/runtime requanti-

zation with negligible rescaling overhead, with a minimal

extension to the commodity tensor compute hardware.

II. BACKGROUND AND MOTIVATION

A. Large Language Models

In essence, LLMs build on a series of Transformer

blocks [59], each of which consists of the attention and feed-
forward layers, as illustrated in Figure 1. In this section,

for ease of understanding the subsequent sections, we briefly

describe the operation flow within the Transformer block using

the terminology and notation used throughout the paper.

In the attention layer, there are four weight matrices, which

are used for linear projections: query (WQ), key (WK), value
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Figure 1: Illustration of the Transformer block architecture.

(WV ), and output (WO) projection matrices. Each projection

matrix has a dimension of dmodel × dmodel, where dmodel is

the dimension of an input embedding vector (i.e., the number

of features). For an input sequence length of n (i.e., n tokens),

the input (X) to the attention layer is an n × dmodel matrix.

Then, each of the query (XQ), key (XK), value (XV ) matrices

of the attention layer is computed by multiplying the input

matrix (X) with their respective weight matrices (W ).

XQ = X ×WQ; XK = X ×WK ; XV = X ×WV

After the QKV projection, we compute the attention score

(XS) and the attention value (XS×XV ) using the projected

matrices. Lastly, the output of the attention layer (XO) is

computed by multiplying the attention value (XS×XV ) with

the output weight matrix (WO) along with a residual add (X).

XS = softmax(XQ ×XT
K)

XO = XS ×XV ×WO +X

The feed-forward network (FFN) in the Transformer block

takes as input the output of the attention layer (XO). It consists

of two fully-connected (FC) layers, thus there are two weight

matrices, WFC1 and WFC2, each of which has dmodel × h
and h × dmodel dimensions. The output of the feed-forward

layer (XT ) is computed using the following equation.

XT = ReLU(XO ×WFC1)×WFC2 +XO

In addition, there exists a layer normalization operation

(LayerNorm) at the start or the end of each attention and

FFN layer, which we omit in the figure for simplicity. The

Transformer block produces an output with the same dimen-

sionality as the input, which makes Transformer-based LLMs

easily scalable by adjusting the number of Transformer blocks.

B. Outliers in Large Language Models

The state-of-the-art post-training quantization (PTQ) meth-

ods [16], [33] demonstrate that the weights in LLMs can be

effectively quantized to eight or even four bits via standard per-

tensor (e.g., a scaling factor for each tensor) or grouping-based

(e.g., a scaling factor for g consecutive weights in a tensor)

quantization techniques without a significant degradation in

model performance. In contrast, it is quite challenging to

quantize activations in LLMs using the same methods due
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Figure 2: Values in the activation (left) and weight (right) tensors for
the attention and the first FC layers. The values are obtained from
the 8th layer in the OPT-6.7B model. The Q, K, V weight tensors
are concatenated along the out dimension for better visualization.
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Figure 3: Heatmap of the attention input tensors for sampled layers
in the OPT-6.7B model. The values larger than 4.0 or smaller than
-4.0 are truncated to 4.0 or -4.0 for better visualization. We also only
show channels from 2300 to 3000 for a clearer view.

to the existence of outliers, which refer to the extremely large

magnitude values compared to others within a tensor.

Figure 2 shows the values in several weight and activation

tensors. As depicted in the figure, the input activation tensors

of the attention and the first FC layers (i.e., X and XO) have

significantly large values in a few input (feature) dimensions,

whereas the weight tensors have a relatively similar range

of values. In principle, this makes it difficult to quantize

activations compared to the weight tensors in LLMs due to the

wide range of values, which we discuss further in the following

sections. Prior studies show that outliers are concentrated in

the fixed channels of activation tensors across the layers and

batches [11], [62] due to the model intrinsic, such as large

LayerNorm weights in the fixed channels across the layers.

We also observe a similar trend, as shown in Figure 3. We see

the presence of vertical red or blue lines for each attention

input tensor. This indicates that the outliers are typically at

the channel granularity (i.e., within a few specific channels).

TABLE I: Model performance (perplexity) at different quantization
granularities for activation tensors. Lower is better.

Models OPT-6.7B OPT-13B Llama-2-7B Llama-2-13B

FP16 10.86 10.13 5.47 4.88

INT8 per-tensor 26.73 4E+3 8.54 51.45
INT8 per-row 20.02 3E+3 5.58 4.94
INT8 per-column 10.87 10.13 5.48 4.89

INT4 per-tensor 1E+6 9E+8 4E+4 2E+4
INT4 per-row 1E+6 1E+9 1E+3 5E+3
INT4 per-column 19.38 14.60 7.73 6.47

C. Challenges in Quantizing Large Language Models

Preliminaries on Quantization. There have been various

quantization techniques proposed over the past years. How-

ever, the most commonly used one today is uniform integer
quantization, as it is amenable to acceleration by the integer

pipeline in commodity hardware. As such, similar to prior

works in LLM quantization [11], [65], this section focuses on

uniform symmetric quantization, which can be expressed as

follows:
s =

xmax

2b−1 − 1
; xq = round(

xf

s
),

where s is a scale factor, b is the bit width of a quantized

value, xmax is the absolute maximum value, and xf and xq are

a floating-point value and the quantized one. Dequantization

restores quantized integer values to floating-point numbers

by multiplying them with s. To mitigate the overhead of

determining xmax in activation during runtime, most prior

works employ static quantization, which pre-computes the

scale factors using some calibration samples before runtime.

Depending on how elements in a tensor are being quantized

as a group, there can be various levels of quantization granular-

ity, including per-tensor, per-row, and per-column quantization.

In per-tensor quantization, all the elements within the tensor

share the same quantization parameter (i.e., a scale factor),

which simplifies the quantization process. Per-row or per-

column quantization shares the parameter at a row or column

granularity to further reduce the quantization error.

Table I shows the perplexity when we quantize the activation

at three different granularities. As shown in the table, the

per-column granularity (i.e., input/feature dimension) shows

the best perplexity, as it uses the quantization parameters for

outliers that differ from others. However, applying per-column

quantization to activations poses challenges in the modern

GPU or TPU integer pipelines since each element needs scal-

ing during the reduction operations in matrix multiplication.

Consequently, all prior LLM quantization works employ per-

row (per-token) or per-tensor quantization for activations and

per-column or per-tensor quantization for weights.

Approaches to Handling Outliers in LLM Activations.
Several algorithm-oriented PTQ works aim to handle outliers

in LLM activations, and two most closely related works

are LLM.int8() [11] and SmoothQuant [65]. LLM.int8() [11]

employs a mixed-precision decomposition, where outliers in

activations are kept in FP16 precision, while the other val-

ues are quantized to INT8. However, the mixed-precision

decomposition leads to a non-negligible performance overhead
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in performing matrix multiplication due to the dequantiza-

tion that involves floating-point operations (Section III-B).

SmoothQuant [65] addresses the quantization difficulty by

partially migrating it from the activations to weights. However,

there exist inefficiencies because it does not explicitly isolate

outliers from normal values, leading to a large quantization

loss at ultra low-bit precisions (Section V-B).

There are also several outlier-aware accelerators that use

mixed precision to quantize normal values into low bits while

separately handling the outliers. GOBO [70] is a weight-

only quantization scheme that quantizes outlier weights using

higher precision. OLAccel [44] uses a few 16-bit MAC units

alongside 4-bit MAC units to deal with outliers. DRQ [52]

employs a fine-grained detection algorithm to identify sensitive

regions in a tensor. All of these works use mixed precision,

requiring complex hardware and unaligned memory access.

OliVe [20] is the most recent work, which quantizes outliers

using custom number representations. Although there is no

mixed precision involved, it prunes adjacent normal values and

requires an encoder/decoder to support its custom datatype.

D. Challenges and Opportunities

Intuitively, one can choose to split activation tensors along

the reduction axis (i.e., columns in 2D) and quantize each

group with different scaling factors instead of employing an

impracticable per-column approach. We can then represent the

matrix multiplication via the channel grouping as follows:

Pi =
Xi ×Wi

sisw
, Y =

G∑

i=1

(sisw) · Pi, (1)

where si and sw are the scale factors of activation of group i
and weight. Pi, Y , and G denote the partial sum from group

i, the final resulting matrix, and the number of groups.

The above execution model still suffers from lower utiliza-

tion of compute cores due to smaller submatrices and frequent

rescaling to accumulate partial product Pi. Thus, to fully

benefit from quantization while preserving the accuracy of the

model, we need to address the following challenge—splitting

channels along the reduction axis and grouping channels

with similar ranges to isolate outliers from the others while

retaining the reduction axis to better utilize compute cores.

Our intuition is that we can retain the reduction axis of

matrix multiplication by processing partial sums in a specific

order and rescaling the accumulated value before adding the

next partial sum. Our execution model can be expressed as the

following equation:

A1 = P1, Ai+1 = Ai · si
si+1

+ Pi+1,

Y = AG · (swsG),
(2)

where Ai represents the results accumulated up to ith partial

sums. Note that Equations 1 and 2 are mathematically equiv-

alent. For Equation 2 to operate efficiently in hardware, the

rescaling needs to be performed by the integer MAC units

while preserving correctness. We will use the term rescale
factor to denote si/si+1 between the channel groups.

To this end, we propose Tender, an algorithm hardware

co-design technique for quantizing large language models en-

tirely into INT4/INT8 without using mixed precision, custom

datatypes, or re-training. The carefully designed post-training

quantization (PTQ) algorithm of Tender decomposes channels

to isolate outlier channels from normal ones in activation

tensors. At the same time, Tender enables rescaling inside

the tensor compute units, so it does not require explicit

requantization and thus fully utilizes the integer pipelines. In

the following sections, we discuss how the above rescaling can

be done inside the compute units with minimal extensions to

hardware through the software-hardware co-design of Tender.

III. ALGORITHMIC IMPLEMENTATION

A. Overview

In this section, we introduce tensor decomposition and

runtime requantization of Tender. As discussed in Section II-B,

outliers reside along the channels in the activation tensors

across the layers of LLMs. Thus, we decompose channels

to minimize the quantization error by isolating the outlier

channels from the others. We propose a “Power of 2” channel

decomposition rule that aligns well with the value distribution

of activation tensors. Also, we present runtime requantization

that works harmonically with the decomposition rule. It en-

ables matrix multiplication between decomposed, quantized

activation tensors and linear symmetrically quantized weights

without involving floating-point operations but in a mathe-

matically equivalent way. We then present a walking example

of the Tender algorithm and optimizations at the end of the

section.

While the explanation in this section is based on INT8

quantized activation-weight matrix multiplication, the same

algorithm is applied to INT4 or activation-activation matrix

multiplication (e.g., XQ × XT
K in a Transformer block).

Furthermore, Tender can be easily extended to other bit widths

(e.g., 5, 6, 7-bit integers) in the same way if the hardware

supports such datatype operations. This is possible due to the

standard and symmetric quantization of Tender, whereas other

approaches typically need to define new custom datatypes.

B. Tender: Decomposed Quantization

Tender Computation Flow. As mentioned in Section III-A,

we decompose activation tensors throughout the attention

and feed-forward layers for quantization. Figure 4 shows our

decomposed quantization strategy. First, we compute the bias

of each channel and subtract it from the activation tensor. The

bias is a similar concept to the zero-point used in asymmetric

quantization, and it is computed as the sum of the maximum

and minimum values divided by two. By subtracting the bias,

Tender ensures that the absolute values of the maximum and

minimum elements in the channel are equal, thus optimizing

the bit usage.

Then, to accommodate the presence of outliers in quantiza-

tion, we decompose the channels of the activation tensor into

multiple groups of subtensors and use separate scaling factors

for each group. Through runtime requantization, we multiply
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Figure 4: Decomposed quantization flow in Tender.
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Figure 5: Runtime Requantization. Compared to the original com-
putation flow, we retain the reduction axis length by shifting the
accumulated partial product sum between decomposed matrices.

the decomposed quantized activation tensors and the linear

symmetrically quantized weight without explicit dequantiza-

tion with negligible latency overhead. Finally, the bias mul-

tiplied with weights is added to the output for mathematical

correctness. Note that all the weights can be quantized to INT8

before inference. Also, channel decomposition, channel biases,

and scale factors are pre-computed during calibration.

Tensor Decomposition. Tender decomposes channels by set-

ting thresholds that are in powers of integer relationships.

Decomposition consists of three steps. First, Tender finds the

absolute maximum values of each channel (CMax). Tender

also computes the maximum value from CMax, which corre-

sponds to the absolute maximum of a given tensor (TMax).

Then, we set the boundaries for splitting channels by dividing

TMax with the power of α and assign i-th channel to an

appropriate group g satisfying the following equation:

TMax

αg
< CMaxi ≤ TMax

αg−1
, g = 1, 2, ...G (3)

where CMaxi is the i-th channel absolute maximum. This

is simple classification, which is much faster than clustering.

Finally, every channel in group g is quantized using the same

scale factor TMax
αg−1·(2b−1−1)

. If we choose an integer for α
and compute channel groups with an ascending group index,

rescaling can be done using integer arithmetic by simply

multiplying α to an accumulated value. We use 2 for α, so

that the requantization can be done with simple shifting. More

details about the reason why we use the power of α approach

and 2 for α will be discussed in the following section.

Power of 2. Here we explain our “power of 2” approach

by answering the following three questions: 1) Why use

classification? 2) Why use coarse-grained thresholds for large

values and fine-grained thresholds for small values? 3) Why

use 2?
1) Why use classification?: We can decompose channels in

various ways. In the extreme scenario, we can use individual

scale factors for each channel, which can greatly reduce

the quantization error [5], [65]. However, in this way, as

Figure 5(a) shows, the number of operations including matrix

multiplication, dequantization, and addition between partial

products increases in proportion to the number of channels.

In the case of OPT-6.7B [72], for example, it increases

4096 times compared to the original computation without

channel decomposition. As such, grouping channels that have

a similar range of values to share a scale factor via clustering

or classification is a more practical and scalable option.

Clustering computes how similar the value range is between

every channel and then groups the channels with a small

distance. Classification is based on pre-defined thresholds

where the channels are binned to fit within the threshold

range. Thus, clustering can group the channels more accurately

than classification but is not likely applicable at runtime

(without complex hardware) due to the large computational

overhead. So, we choose to use classification to make our

algorithm simple and to be easily extended to support runtime

decomposition.
2) Why use coarse-grained thresholds for large values

and fine-grained thresholds for small values?: The maximum

quantization error is 0.5 × (scale factor) since the maxi-

mum value of rounding error is 0.5. The scale factor is

set proportional to the absolute maximum of the group. So,

as the absolute maximum of the group becomes larger, the

quantization error grows linearly. Also, considering that there

exist multiple channels in a group, the quantization error of

a group grows linearly to the number of channels that are

included in the group. We can express the quantization error

of a group as follows:

Qerr ∝ Absolute Maximum × Number of Channels

1052



Thus, for a group with a large absolute maximum, we need

to minimize the number of channels in the group. Intuitively,

this can be viewed as isolating quantization errors due to the

large scale factor to only a few number of channels. Similarly,

for a group with a large number of channels, we need to

minimize the absolute maximum of the group. As Figure 2

shows, only a few channels have large magnitude values, and

most of the channels have values near zero in the activation

tensor. Thus, using coarse-grained thresholds (i.e., a large

absolute maximum) for the channels with large magnitude

values does not hurt the overall accuracy because the group

includes only a few channels. Meanwhile, using fine-grained

thresholds (i.e., a small absolute maximum) for the channels

with small magnitude values can effectively minimize the ac-

curacy drop by using the small threshold near the value range

of the channels. Thus, our approach can efficiently classify the

channels with a minimum accuracy drop. Note that, of course,

it is possible to achieve better accuracy by using fine-grained

thresholds for both the channels with large magnitude values

and channels with small magnitude values. However, dividing

more channels incurs a computation overhead, whereas using

a fine-grained threshold for the channels with large magnitude

values has a minimal increase in accuracy due to the small

number of channels that are included in the group.

3) Why use 2?: Setting scale factors by dividing the maxi-

mum scale factor with the power of 2 has two key advantages.

First, we can guarantee the lower bound of the quantization

level. When a channel is assigned to a quantization group,

the absolute maximum of the channel is at least larger than

half of the threshold of the group. Thus, even for the worst

case, n − 1 bits are utilized for n-bit quantization. Second,

when the ratio between the scale factors is a power of 2,

we can efficiently compute the matrix multiplication involving

decomposed quantized activation tensors with a negligible la-

tency overhead, which we discuss in the following paragraph.

In summary, the benefit of the “power of 2” is that it not only

enables rescaling with integer arithmetic but also considers the

alignment with the channel distribution in activations.

Runtime Requantization. Although tensor decomposition can

effectively reduce the quantization error, naively employing it

requires an additional computation step to retain functionality

(Figure 5(a)). In a naive implementation, we must decompose

channels to generate multiple separate matrices and compute

the partial product of each group. Each partial product is

dequantized using the scale factor of each matrix and added up

to the final result. This incurs an additional overhead due to the

increased number of floating-point operations. Furthermore,

decomposing the channels and computing the partial product

of each channel group lead to a shortened reduction axis.

This results in underutilization of compute cores especially in

the systolic array architecture. To alleviate these inefficiencies

and fully utilize the compute cores, we propose Runtime
Requantization.

Our intuition is that the systolic array accumulator has

a sufficiently large bit width, and we can safely requantize

the partial products with a proper rescaling factor without

clipping values due to limited bit width. In this way, we

requantize accumulated partial products without involving

explicit floating-point operations. We use a shifter residing

next to the accumulated sum for requantization since we use

2 as a rescaling factor. Figure 5(b) illustrates our runtime

requantization approach. We perform matrix multiplication

with a channel group that has the larger scale factor first.

Then, before computing matrix multiplication of the next

group, Tender shifts the accumulated integer value by 1-bit.

After finishing the matrix multiplication of all the groups, we

dequantize the final result using the smallest scale factor. This

approach incurs a negligible latency overhead for rescaling

with a small hardware extension. To reduce the overhead of

determining a scale factor at runtime, we further optimize our

scheme to use calibration to pre-compute the scale factors and

biases of each channel offline. We also classify each channel

into a group at calibration time and only apply the metadata

to perform quantized matrix multiplications at runtime.

A Walking Example. We explain how our decomposed quan-

tization algorithm works with an example in Figure 4, where

there are six channels (channel IDs 1-6). After subtracting the

bias, each point represents the absolute maximum value of

each channel (CMax). In the example, the 2nd channel has the

largest CMax value among the channels. Thus, we set the first

(and largest) scale factor (S1) as the absolute maximum value

of the 2nd channel (i.e., 22.4) divided by k = 2b−1 − 1 (e.g.,

127 and 7 for INT8 and INT4 quantization), where b is the

quantization bit width. We then set the subsequent quantization

boundaries by dividing S1 by power of 2. For simplicity, we

only consider three groups in the example, so S2 and S3
would be 11.2 and 5.6 divided by k = 2b−1 − 1, respectively.

Now, we classify each channel into one of the three groups.

In the example, the 1st, 3rd, and 5th channels are assigned to

the same group (A3), sharing the same scale factor (S3). The

4th and 6th channels are also classified into the same group

(A2). The 2nd channel is assigned to another group (A1) with

the largest scale factor (S1). After classification, six different

channels are decomposed, so we can minimize the quantization

error while making the runtime requantization viable.

Optimization. We apply the Tender algorithm to large lan-

guage models and achieve similar or better model performance

compared to the existing quantization works [20], [21], [65]

on INT8 quantization. We achieve this while keeping the algo-

rithm hardware-friendly and the required hardware minimal.
However, for INT4 quantization, the proposed algorithm in-

evitably leads to some drops in model performance compared

to FP16 due to its simplicity, most of which can be easily

recovered with conventional row-chunking techniques.

For example, we can divide the rows of the activation tensor

into several chunks and calibrate the bias and scale factor for

each row chunk. Figure 2 shows that there exist not only inter-

channel variances but also intra-channel variances. Thus, we

may consider intra-channel variances as well as inter-channel

variances to group values more effectively. We observe that
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Figure 6: (a) Overview of Tender architecture. (b) Multi-Scale Systolic Array with FIFOs attached for skewing data. (c) Each PE is extended
with a 1-bit shifter and a 1-bit control signal for rescaling. The PE updates an accumulated partial sum depending on the rescale signal.

this can greatly improve the accuracy of our algorithm by

taking the characteristics of each row chunk into account.

Because matrix multiplication is typically performed in a

tiled manner (i.e., tile-by-tile), row chunking naturally fits the

execution model with almost no additional complexity. We use

256 as a row chunk size. We also apply per-column weight

quantization and per-head activation quantization, which also

incur negligible calibration overhead.

When optimizing with row chunking, channel grouping

is applied to each row chunk, and channel indices, biases,

and scale factors are calibrated independently for each chunk

offline. This makes the group size and compute ordering differ

between row chunks. From the hardware perspective, the row

chunk size needs to be larger than the systolic array dimension;

otherwise, there can be underutilization of the compute unit.

This is because the systolic array computes rows and applies

runtime requantization at the granularity of the systolic array

dimension. While the on-chip buffer reuse decreases, it has

a negligible impact on performance with a reasonably large

chunk size. As mentioned, we choose 256 as a balance point,

where accuracy remains close to the baseline model due to

fine-grained row grouping, and it is also sufficiently larger

than the systolic array dimension.

IV. HARDWARE ARCHITECTURE

We quantize the weights and activations in a Transformer

block into INT4/INT8, adopting the systolic array as the

main computation module. The Tender architecture closely

follows the conventional systolic design [28], [29] with a

simpler hardware configuration for brevity. In this section, we

address how our proposed channel decomposition and runtime

requantization are implemented in hardware with a minimal

extension to the existing design.

A. Overview

Figure 6(a) shows an overview of the Tender architecture.

Memories are HBM2, Scratchpad Memory, Output Buffer,

and Index Buffer. The HBM Controller manages data move-

ment between the on-chip buffers and HBM2. The Execution

Controller sends an address to the Scratchpad Memory to

bring data from the on-chip memory to the systolic array
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Figure 7: Execution model of the MSA. (a) A 1-cycle bubble is
inserted between the decomposed matrices. (b) Activated datapath
inside PE during MAC and Rescale operation.

for computation. It also sends control signals to the systolic

array to manage its operations. The data is computed in the

Multi-Scale Systolic Array (MSA) and Vector Processing Unit

(VPU). Figures 6(b) and 6(c) show our Multi-Scale Systolic

Array architecture, which follows conventional architectures

with minimal extensions of a 1-bit rescale signal and a 1-bit

shifter inside the processing element (PE).

B. Multi-Scale Systolic Array (MSA)

The main matrix multiplication operation occurs in our

Multi-Scale Systolic Array (MSA). As illustrated in Fig-

ure 6(b), the MSA is a 2-D mesh of PEs with FIFOs attached

for skewing the inputs and weights. In Tender, we use a single

64×64 systolic array with each PE executing a 4-bit MAC

operation per cycle. When the model precision is INT8, 4

PEs are grouped to perform 8-bit multiplication, with each PE

handling either upper or lower 4 bits of inputs and weights.

Note that we can scale the number of systolic arrays similarly

to the commercial design.

MSA is an output stationary compute module where a par-

tial sum is accumulated in each PE, with an extension of the 1-

bit shifter attached to the accumulator register. Figure 7 shows

how our MSA works on a series of decomposed matrices

with different scale factors. During the computation of each

decomposed matrix, PEs perform normal MAC operations,

and the accumulated value is stored in the internal 32-bit

register (Acc). When the PEs complete matrix reduction for

a decomposed matrix (e.g., A1 × W1), a 1-cycle bubble is

inserted for the input and weight with a rescale signal set

(Figure 7(a)). During the rescale operation, it requantizes the
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values by shifting 1 bit of the accumulator register to the

left. Since each PE finishes matrix reduction for a given

decomposed matrix at different cycles, the rescale signal is

synchronized with the wavefront of the input and is passed

along to the next PE in the same row. To generate rescale

signals at the right cycles, the Execution Controller has the

metadata of the number of channels executed, indices of tensor

splitting points, and rescale factors (if needed).

We choose our systolic array to be output stationary for two

reasons. First, it allows us to easily extend the systolic array

to handle arbitrary rescale factors (i.e., other than α = 2)

when needed. Since the accumulator register is wired with the

multiplier and shifter within a PE, we can split the register into

equal parts and multiply each part with an arbitrary integer

rescale factor that can come from the 4-bit input or weight

datapath. For example, with a given rescale factor α (e.g., 3)

coming from the input datapath, the accumulator is split into

8 parts (each with 4 bits). Then, at each cycle, it is multiplied

with the rescale factor, starting from the part with the lowest

bits, and its partial product is shifted to the original position

to be added to the resulting value. The process is repeated for

eight cycles to compute all the parts for rescaling.

Second, the dataflow of the output stationary systolic array

requires a minimal hardware extension for rescaling. The

output stationary systolic array can be seen as an output value

mapped to each PE, and a partial product is produced and

accumulated in the same PE every cycle. Thus, an additional

1-bit shifter with control logic for each PE is enough for

conventional hardware. For weight stationary design, we need

a shifter in the accumulator (which resides outside of PE

arrays) as well as in the PEs. Rescaling can be done as

follows: 1) Weights are loaded in the group order, and the

PEs at the boundary of each group are programmed to shift the

partial product after MAC operations. 2) Each corresponding

accumulator shifts its value before adding an incoming partial

product. Note that although the above procedure requires

slightly more changes in hardware than output stationary, it

is still a small extension to existing hardware, and Tender can

also be implemented on the weight stationary design.

C. Vector Processing Unit (VPU)

The Vector Processing Unit (VPU) is a SIMD-style floating-

point unit (FPU) that operates on vector elements. It performs

scaling of incoming INT32 results from the Output Buffer

(i.e., matrix multiplication results) into INT4/INT8 with an

optional activation (e.g., ReLU, GeLU) before storing it back

to the Scratchpad Memory. It uses calibrated bias and scale

factors, which are computed before inference. VPU consists of

64 FPUs and internal vector registers for pipelining. There are

additional registers to buffer scaling factors for quantization.

Note that VPU also performs computation for the softmax and

LayerNorms in the Transformer block.

D. Controllers & Index Buffer

The Execution Controller and HBM Controller operate

independently during computation to keep the MSA busy. The
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Figure 8: Dataflow of Tender.

HBM Controller handles data transfers between HBM2 and

Scratchpad Memory, where the weights, inputs, and computed

outputs are stored at INT4/INT8 precision. The Execution

Controller sends an address to Scratchpad Memory and control

signals (e.g., enable, rescale, and done signal) to the MSA.

As discussed in Section III-B, Tender needs certain channels

to be processed before the others (e.g., channel order 1-0-3-2

in Figure 8). To avoid explicit reordering of the data layout

in memory, which incurs costly read and write operations, we

instead implicitly reorder channels through indirect indexing.

Figure 8 shows how channels are sent to the MSA in the

required order. Specifically, we first store the computation

order of the channel indices in the Index Buffer, which is

pre-determined at static time through calibration (� Program).

The channel indices are reused over the entire row group to

amortize memory access overhead, and the Index Buffer is

double-buffered to hide memory access latency as it is on the

critical path. While the HBM Controller also sends data from

the off-chip memory into the Scratchpad Memory (� Transfer

Data), the Execution Controller looks up in the Index Buffer

and obtains the channel indices (�) to generate an address for

the target channel to load (�). Finally, channels are sent to

the MSA in the order of the required computation (�).

E. Scratchpad Memory & Output Buffer

As previously mentioned, all the inputs and weights are

quantized into INT4/INT8 and stored in the Scratchpad Mem-

ory. Without the need for mixed precision storing, the memory

access is aligned, and the addressing logic becomes simpler.

The Output Buffer stores the computation result from the MSA

in INT32 and sends them to the VPU for rescaling back to

INT4/INT8, which is also highly banked to match the compute

throughput of the VPU.

V. EVALUATION

A. Experimental Methodology

Software Implementation. We implement our algorithm us-

ing PyTorch Hugging Face [63]. For evaluation, we use the

Open Pre-trained Transformers (OPT) suite [72], LLaMA [57],

and Llama-2 [58] with varying model sizes ranging from 6.7B

to 70B to demonstrate the general applicability of our proposed

method. We mainly evaluate language modeling tasks using

WikiText-2 [37] and Penn Treebank (PTB) [36] datasets. We

use perplexity as an evaluation metric, which is a widely used
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TABLE II: INT8/INT4 PTQ results (perplexity) for large language models. Lower is better. We omit LLaMA-65B due to the unacceptable
increase in perplexity in all other schemes except for Tender in INT4 quantization.

Precision Scheme
OPT-6.7B OPT-13B OPT-66B Llama-2-7B Llama-2-13B Llama-2-70B LLaMA-7B LLaMA-13B

Wiki PTB Wiki PTB Wiki PTB Wiki PTB Wiki PTB Wiki PTB Wiki PTB Wiki PTB

FP16 Base 10.86 13.09 10.13 12.34 9.34 11.36 5.47 20.83 4.88 28.93 3.32 14.44 5.68 8.80 5.09 8.07

INT8

SmoothQuant 10.93 13.21 10.40 12.53 9.87 11.71 48.54 1E+4 447.52 491.51 17.30 46.96 27.85 54.98 16.02 32.84

ANT 19.72 27.96 4E+3 3E+3 3E+3 3E+3 8.79 4E+4 20.52 152.01 7.28 36.18 8.52 13.41 7.49 10.85

OliVe 10.93 13.23 10.28 12.41 9.43 11.41 8.16 30.12 30.50 26.16 50.94 245.09 53.34 113.48 7.62 10.76

Tender 10.93 13.14 10.17 12.39 9.43 11.40 5.77 18.95 5.09 21.13 3.48 14.23 5.87 9.05 5.28 8.27

INT4

SmoothQuant 5E+4 2E+4 9E+3 1E+4 6E+4 3E+4 3E+5 3E+5 4E+4 4E+4 7E+4 5E+4 3E+5 2E+5 2E+5 2E+5

ANT 9E+3 6E+3 4E+4 3E+4 1E+4 7E+3 189.72 2E+4 165.19 1E+3 24.96 155.92 80.13 109.21 96.71 247.65

OliVe 50.83 43.96 35.76 75.37 6E+3 4E+3 44.24 860.93 1E+3 97.93 99.91 216.53 195.15 359.43 94.32 181.69

Tender 13.56 16.28 16.43 19.92 12.38 14.01 36.47 114.44 55.08 208.76 13.43 50.66 23.85 38.09 13.68 28.24

one for autoregressive models; lower perplexity means better

model performance. To show that our algorithm works on the

encoder-only model as well, we also evaluate the accuracy of

BERT-Large [13] with the GLUE benchmark [60]. We use 128

samples from the Pile [17] validation set for calibration to set

scale factors, group indices, and a bias before runtime.

Quantization Baselines. We compare the model performance

of our quantization scheme with a variety of outlier-aware PTQ

works. For software-only quantization work, we compare with

SmoothQuant [65]. SmoothQuant migrates the quantization

difficulty of activations to weights by scaling channels of

inputs and weights.1 We also compare our work with ANT [21]

and OliVe [20], which target quantization under architectural

support. OliVe employs outlier-victim pair encoding, which

sacrifices the normal value next to the outlier to preserve

the important outlier value. ANT proposes to adaptively use

different datatypes for different tensors. They both use custom

data formats.

Hardware Implementation. We implement Tender in RTL

with SystemVerilog and verify the functionality of each com-

ponent via RTL simulation. We report the area and power of

Tender by synthesizing the components using a commercial

28 nm technology node with Synopsys Design Compiler [53].

On-chip SRAMs are also synthesized from a commercial

memory compiler with the same technology. HBM2 [4] is

used as off-chip memory with the energy model from FG-

DRAM [40]. We also implement a cycle-level simulator with

Ramulator [31] for DRAM timing to compare the performance

of Tender and baseline accelerators. The timing parameters

of the simulator are set based on the RTL synthesis results.

Section V-C discusses the detailed configuration of Tender

with the performance reported from our simulator.

Accelerator Baselines. We compare the performance and

energy efficiency between Tender and existing quantization-

based hardware accelerators:

• OLAccel [44] proposes outlier-aware quantization, which

represents normal values in 4 bits and outliers in 8 or 16

1We use the original implementation of SmoothQuant. The increase in
model performance by enhanced SmoothQuant [25] was marginal while taking
far longer calibration time in our experiments. The model performance of
enhanced SmoothQuant was still worse than Tender.

bits. In addition to the 4-bit normal PEs, OLAccel imple-

ments outlier PEs; outlier PEs perform mixed precision

computation (e.g., 16-bit × 4-bit).

• ANT [21] implements a systolic array with a decoder

attached to the edge of the array to support various

formats including custom datatypes. The decoder converts

datatypes into the exponent and integer. We implement

an output stationary systolic array as it shows the best

performance.

• OliVe [20] also implements an output stationary systolic

array with decoder logic to decode datatypes including

outlier-victim pairs into the exponent and integer.

For an iso-area comparison, we synthesize the MAC units

and accumulators of each accelerator and configure the number

of PEs accordingly. We extend the baseline accelerators to

use a 32-bit accumulator due to the large reduction length

of matrix multiplications in LLMs. Also, we set the same

memory bandwidth and on-chip buffer size for the acceler-

ators, which are large enough to fully utilize the compute

core. We compare speedups in LLMs with a batch size of

1. The input to output sequence length is set to 2048:1,

following the speedup evaluation in prior works [20], [65]. For

the generation stage, Tender still works and provides benefits

by decomposing the activation. However, the under-utilization

issue of most commercial accelerators (e.g., GPU, TPU) can be

large as prior work points out [24]. To mitigate this, there are

ongoing studies on batching decoding [51], [68], and Tender

can work synergistically with those schemes.

B. Language Model Performance

PTQ Performance on LLMs. We analyze the perplexity

of PTQ for LLMs, which is the main target of our work.

Table II shows the perplexity under INT8 and INT4 quan-

tization settings. The sequence length is set to 2048. For a

fair comparison with prior works, we disable the quantization

of Tender for matrix multiplication between activations. In

INT8 quantization, Tender consistently retains almost the same

perplexity from that of the FP16 baseline (less than a 6%

increase), while prior works show up to a 1893× increase

in perplexity. Notably, Tender even outperforms the FP16

baseline in the Llama-2 models with the PTB dataset. This

can be due to the rounding in the quantization function.
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TABLE III: INT8/INT4 PTQ results (perplexity) across different
sequence lengths. Lower is better.

Precision Scheme
2048 256 32

Wiki PTB Wiki PTB Wiki PTB

FP16 Base 10.86 13.09 19.18 22.00 78.97 103.42

INT8

SmoothQuant 10.93 13.21 19.17 22.14 79.32 102.68
ANT 19.72 27.96 48.43 57.97 396.01 364.00

OliVe 10.93 13.23 19.24 22.29 79.69 104.42

Tender (all) 10.98 13.19 19.31 22.08 78.93 102.99

Tender 10.93 13.14 19.28 22.06 78.81 102.84

INT4

SmoothQuant 5E+4 2E+4 5E+4 2E+4 4E+4 2E+4

ANT 9E+3 6E+3 8E+3 6E+3 6E+3 3E+3

OliVe 50.83 43.96 88.05 113.53 441.03 371.73

Tender (all) 17.15 23.25 27.57 30.58 96.34 118.85

Tender 13.56 16.28 23.16 26.12 91.27 111.90

Since the overall quantization error is quite low in INT8,

rounding can prune out the unnecessary small values, so

that the model can instead focus on the important ones. In

INT4 quantization, the outlier affects the model performance

more profoundly than in INT8 quantization. This is because

quantizing outliers with others leads to larger scale factors,

and this effect becomes more pronounced in INT4 PTQ which

inherently has small quantization levels. Thus, isolating the

outlier channel is more important in INT4 quantization. Tender

shows far better perplexity than others, which indicates that

the channel decomposition of Tender can well separate the

outlier channels from others and classify the channels with

similar ranges into the same group.

Sequence Length Sensitivity. Table III shows the perplexity

comparison between Tender and prior works for three different

sequence lengths (2048, 256, 32) on OPT-6.7B [72]. Here

we configure Tender into two variants. “Tender” disables the

quantization for matrix multiplication between activations for a

fair comparison, while “Tender (all)” quantizes all the matrix

multiplications in the Transformer block. Tender shows the

best model performance for most of the quantization scenarios.

Notably, although Tender (all) shows a slight increase in

perplexity, it even outperforms the prior works that do not

quantize matrix multiplication between activations in most

cases. Furthermore, Tender maintains the perplexity close to

the FP16 baseline even when the sequence length increases.

This is due to the channel decomposition which considers

inter-channel variation and the row chunking which handles

intra-channel variation. As shown in the results, Tender is

more robust than others while dealing with diverse scenarios

of outlier values and sequence lengths. Note that we use single

calibration data attained from the 2048 sequence length for the

evaluation across different sequence lengths.

Quantization Accuracy on BERT. Table IV shows the accu-

racy for INT8 and INT4 quantization on BERT-Large [13] with

the GLUE benchmark [60]. All schemes in Table IV quantize

all the matrix multiplications in a Transformer block. Although

the outliers of the BERT-Large are much smaller than the

ones of other large language models, Tender outperforms other

TABLE IV: INT8/INT4 PTQ results (accuracy) on BERT-Large.
Higher is better.

Precision Scheme CoLA SST-2 MRPC STS-B QQP QNLI

FP32 Base 60.20 93.12 91.58 89.94 91.40 92.33

INT8

ANT 59.16 92.55 77.99 89.23 89.66 81.48

OliVe 61.12 93.12 91.33 89.91 91.42 92.02

Tender 60.45 93.23 91.55 89.98 91.43 92.31

INT4

ANT 53.77 90.60 21.09 85.93 83.62 60.86

OliVe 59.02 92.09 85.32 87.43 89.72 90.48
Tender 61.78 92.32 89.42 87.77 89.23 90.29
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Figure 9: Perplexity for the different number of groups in (a) INT4
and (b) INT8 quantization. Lower is better.

baselines in many tasks. This indicates that our algorithm also

benefits encoder-only and relatively small models.

Multi-Scale Quantization. Figure 9 shows the perplexity on

Llama-2-7B [58] while varying the number of groups for chan-

nel decomposition. We use the PTB [36] dataset and a fixed

sequence length of 256. As we increase the number of groups,

the perplexity decreases rapidly for both INT4 and INT8

quantization. This shows that separating the channels only

into two groups (i.e., outlier channels and normal channels)

is not enough, and decomposing the channels into multiple
groups is necessary to achieve better model performance.

Note that naively adopting multi-scale quantization results in

a frequent interrupt during matrix multiplication. However,

Tender handles the multi-scale quantization without interrupts

by exploiting a minimally extended systolic array.

C. Tender Performance

Area and Power. Table V shows the architectural configura-

tions of Tender. Functioning at the 1 GHz clock frequency,

Tender has an area of 3.98 mm2 with the peak power

consumption of 1.60 W. The numbers in the systolic array

are MAC units and 32-bit accumulators combined. To match

the compute throughput of the VPU, we also design the

output buffer to be highly banked while trading off area with

throughput. We configure the PEs of the baseline accelerators

to have the same area and clock frequency as the ones in

Tender for performance and energy evaluation.

Performance. Figure 10 shows the speedup of Tender and

other accelerators over ANT for the LLM models in Sec-

tion V-B; for brevity, we omit LLaMA as it shows the results

similar to Llama-2. The source of speedups mainly comes

from the careful algorithm-hardware co-design of Tender.

Using single precision of INT4 with a hardware-friendly
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TABLE V: Area and power characteristics of Tender.

Component Setup Area [mm2] Power [W]

Systolic Array 64×64 PEs 2.00 1.09
Vector Processing Unit 64 FPUs 0.08 0.02
Input/Weight FIFOs 64×2 0.05 0.34

Index Buffer 2×(16KB) 0.23 0.01
Scratchpad Memory 2×(256KB) 1.15 0.13
Output Buffer 64KB 0.47 0.01

Total 3.98 1.60
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Figure 10: Speedup comparison across the accelerators.

tensor decomposition scheme, Tender enables a simpler and

denser systolic array design with higher throughputs compared

to others. In contrast, OLAccel has complex control logic

and outlier PEs to support mixed precision, and ANT and

OliVe shift the multiplication result of the integers with the

exponent sum and require more hardware resources. Tender

only performs INT4 MAC operations and eliminates the need

to handle higher precision numbers. Tender shows higher

speedups compared to OliVe since OliVe computes using

the exponent and integer. ANT performs worse than other

accelerators because most of the layers use 8-bit precision to

compensate for the quantization loss. Overall, Tender achieves

2.63×, 1.84×, and 1.48× speedups over ANT, OLAccel, and

OliVe with better model performance and minimal extensions

to MAC units.

Energy Efficiency. Figure 11 shows the energy efficiency

of Tender and the baseline accelerators under the same off-

chip memory and on-chip buffer size. The energy efficiency

of Tender mainly comes from a smaller memory size with

efficient hardware computation under the INT4 precision.

Compared with OLAccel, the energy efficiency comes from

FIFO registers, off-chip memory access, and compute units

due to the shorter computation time. For ANT, using mixed

precision incurs more off-chip accesses and longer computa-

tion latency, leading to higher energy consumption than Tender

and OLAccel. Compared to OliVe, Tender shows better effi-

ciency due to the denser systolic array design. Overall, Tender

shows 1.84×, 1.53×, and 1.24× higher energy efficiency than

ANT, OLAccel, and OliVe.

VI. ANALYSIS AND DISCUSSION

A. GPU Implementation of Tender Decomposition

Tender uses standard INT4 and INT8 representations,

thereby enabling straightforward deployment to existing sys-

tems. To demonstrate the non-intrusive characteristics of Ten-

der, we implement our quantization algorithm on NVIDIA
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Figure 11: Energy efficiency comparison across the accelerators.

GPUs. Figure 12 shows the normalized latency of Tender

software and other quantization schemes in Section II-C.

All schemes are implemented with CUTLASS INT8 GEMM

kernel. We use OPT-6.7B for RTX 3090 and OPT-66B for

A100 to saturate compute units. For small models on A100, we

observe that per-tensor INT8 GEMM exhibits similar latency

to FP16 due to compute underutilization and the relatively

close tensor core throughput between INT8 and FP16. Latency

and mean square error (MSE) are measured for each scheme

with a sample from the query projection in Layer 16.

As shown in the results, Tender SW shows an MSE similar

to the “per-channel” approach and provides slight perfor-

mance benefits over FP16. However, it does not realize its

full potential (i.e., similar to “per-tensor/-row”) due to the

need of explicit dequantization on GPUs. The overall GEMM

execution also takes longer due to the repetitive operations

on smaller submatrices. In addition, INT GEMM kernels for

tensor cores require 128-bit aligned memory access, which

necessitates the padding of each subtensor (to the multiple

of 16) before computation. Accelerators that support Tender

can avoid the overheads and help achieve the full potential of

Tender.

B. Accelerators with Floating-Point Arithmetic

Variants of FP8 formats for DNN training/inference show

good model performance [38]. Although using low-bit FP
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Figure 12: Comparison of Tender SW and other schemes on GPUs.
Latencies are measured in (a) RTX 3090 and (b) A100 80GB.
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TABLE VI: PTQ perplexity of Tender and MSFP for WikiText-2.

Precision OPT-66B Llama-2-70B LLaMA-65B

FP16 9.34 3.32 3.56

MSFP12 7E+3 74.61 73.22
MSFP12-OL 56.69 15.57 26.11
Tender-INT4 13.38 13.43 9.30

TABLE VII: Accuracy for the lm-evaluation-harness zero-shot tasks
used in [10], [48]. Higher is better. Tender uses INT4.

Tasks
OPT-6.7B LLaMA-7B

FP32 SMX4 MXFP4 Tender FP32 SMX4 MXFP4 Tender

Hellaswag 67.16 26.94 54.13 64.54 76.20 25.89 67.51 57.30
WIC 48.12 49.84 51.72 50.00 49.06 50.00 46.24 49.53

Anli-r2 34.40 33.40 33.90 34.20 36.10 33.40 35.30 35.20
Winogrande 65.43 50.12 52.88 61.80 70.01 50.59 62.35 59.04

ARC easy 60.02 29.76 44.57 56.82 72.85 27.78 63.68 58.50
ARC challenge 34.73 23.46 29.18 33.79 44.71 26.88 35.49 36.26

Lambada 67.69 00.02 43.74 60.06 73.61 00.02 56.65 56.80
College CS 34.00 25.00 25.00 34.00 26.00 23.00 22.00 28.00

Int. law 37.19 23.97 32.23 26.45 46.28 29.75 33.06 33.88
Jurisprudence 21.30 25.93 25.00 21.30 36.11 26.85 26.85 24.07

hardware could reduce the impact of outliers, it is more

area/energy inefficient than integer compute units [10].

MSFP [9] uses a shared exponent to mitigate the inefficiency.

As shown in Table VI, however, Tender shows better perfor-

mance than MSFP. By default, MSFP12 uses an 8-bit shared

exponent for 16 elements in a row, so the huge increase

in perplexity likely comes from sharing exponents between

outliers and others. We modify the MSFP12 to use the shared

exponent for 8 elements in a column (MSFP12-OL). However,

still Tender shows better model performance. This is likely

because the intra-channel variance of the outlier channel is

more precisely represented in the integer format than the

MSFP. Thus, Tender achieves better performance than MSFP,

while requiring much simpler hardware.

C. Comparison with Microscaling (MX) Formats

Shared Microexponents (SMX) [10] and the subsequent

Microscaling (MX) format [41] are recently proposed number

representations that employ multiple levels of scaling.2 Similar

to MSFP, they group elements in a block-based manner,

but with two-level scaling, where the scaling factors are

constrained to powers of two. SMX groups 16 elements with

an 8-bit shared exponent, and two elements in a block form a

subgroup to share a 1-bit subscale factor. Similarly, MX groups

32 elements, but each element has also its own exponent field

in addition to the 8-bit shared exponent.

Table VII compares the accuracy between employing Tender

and using SMX and MX formats on OPT-6.7B and LLaMA-

7B for the lm-evaluation-harness tasks used in [10], [48]. For a

fair comparison, we employ the same compute flow across the

low-precision formats while quantizing matrix multiplications

into low precision and keeping other element-wise operations

as scalar floating-point formats as in [48]. The results show

that Tender can provide better or comparable accuracy while

it builds on standard INT4 representations. Note that SMX

2In this paper, we denote Shared Microexponents [10] as SMX to distin-
guish it from the Microscaling (MX) formats [41] endorsed by OCP.

and MX need more customized compute units. For instance,

each element in an MXFP block is essentially a floating-point

number, requiring hardware that deals with FP computation.

The essence of Tender involves setting scale factors that are

powers of two apart between the groups (e.g., the ratios of

scale factors between 1st/2nd/3rd immediate neighbor groups:

21, 22, 23), which enables implicit rescaling with minimal

overhead (1-cycle). MX formats, however, merely use some

power-of-two scale factors, similar to MSFP. Thus, implicit

rescaling by 1-bit shifting cannot be achieved by simply using

MX. As discussed in Section III, the scale factor of Tender is

also not limited to powers of two; it can be any real number.

Additionally, MX formats follow a conventional approach of

grouping adjacent elements, whereas Tender groups columns

within similar ranges while considering ease of computation.

D. Tender on Output and Weight Stationary Dataflows

While we present the benefit of Tender based on the systolic

array that employs the output stationary dataflow, it is not

a strict requirement as discussed in Section IV-B. For the

generation stage in LLMs, we may consider batching inputs

only up to the number of rows of an output stationary systolic

array due to compute and energy efficiency, while we can batch

more inputs than the systolic array dimension for the weight

stationary design. If there are ample batching opportunities,

weight stationary can be more efficient since the output

stationary design may incur idle time and additional energy

due to repeated weight loading. Conversely, when batching is

limited, such as by the memory size of large intermediate states

(i.e., key-value cache), output stationary could be as efficient

as weight stationary since it minimizes the movement of high-

precision partial sums. Note that Tender can be employed in

either case and provides benefits.

E. Channel Decomposition and Compute Utilization

Although channels are decomposed into multiple groups,

Tender can continuously compute the groups in MSA without

a major interrupt. This is because rescaling can be done

entirely in integer PEs (implicit) and only takes a single cycle

(i.e., runtime requantization). During runtime, skewed channel

groups are continuously provided with a 1-cycle rescale signal,

aligned with the inputs between the groups (Figure 7(a)), and

each PE individually rescales the accumulated value via 1-bit

shifting; this feature is crucial as the systolic array takes as

input a skewed matrix. The original computation in Figure 5(a)

leads to large under-utilization of compute units. Tender does

not suffer from this issue and preserves the reduction axis of

the original input matrix, regardless of the number of groups or

the group size for the matrix. Thus, during offline calibration,

Tender only considers model performance to determine the

number of groups, where perplexity does not decrease further

as shown in Figure 9; it varies at some point due to noise.

Each channel is then classified into the corresponding group.

This calibration process naturally determines the size of each

channel group.
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Figure 13: Comparison between implicit and explicit requantization.

F. Impact of Implicit and Explicit Requantization

Channel decomposition with explicit requantization leads

to lower compute utilization due to the shortened reduction

axis and also increases the number of FP operations. To

understand the benefit of implicit requantization on Tender

hardware, Figure 13 presents the end-to-end execution time

when Tender employs either implicit or explicit requantization,

which is normalized to per-tensor quantization (Base). Note

that larger models (e.g., Llama-2-70B) generally need more

number of groups to attain reasonable accuracy. The results

show that Tender with explicit requantization greatly degrades

performance, by up to a 1.74× slowdown over the baseline.

Also, as the larger number of groups (e.g., 16) further reduces

the reduction axis, we observe larger slowdowns compared

to ones in the smaller number of groups. On the other hand,

Tender (Implicit) offers almost the same execution time as the

baseline. This is because there is only a 1-cycle requantization

overhead for each group, so increasing the number of groups

barely affects performance. By employing implicit requanti-

zation, Tender effectively minimizes the overhead associated

with channel decomposition.

VII. RELATED WORK

DNN Accelerators. Domain-specific accelerators for DNNs

have been extensively studied over the past decade [3], [7],

[8], [14], [15], [23], [24], [28], [39], [45], [47]. The processing

units and dataflow of these accelerators are highly specialized

for DNN computation, leading to high performance and energy

efficiency. Several accelerators adopt near-memory processing

to overcome the memory-bound characteristics of specific

types of DNN workloads [6], [30], [32], [34]. Other works also

target sparsity in DNNs to skip ineffective computation [2],

[22], [35], [43], [46], [61], [67], [71]. Tender is orthogonal to

these works and can be synergistically used with conventional

systolic array-based DNN accelerators.

DNN Quantization. Quantization-aware training (QAT) trains

the model under quantization to make it adapt to quantization

errors [26], [54]. However, QAT is a limited option due to the

large model sizes, and thus post-training quantization (PTQ)

has been widely studied for LLMs [11], [65], [66]. RPTQ [69]

employs K-means clustering to group activation channels and

applies asymmetric quantization at the granularity of a channel

group. However, each channel group needs to be computed

one by one, leading to lower compute utilization due to the

smaller matrix sizes of each group. In addition, all the partial

products from each group need to be explicitly dequantized to

add up and obtain the final resulting matrix, which is costly.

GPTQ (OPTQ) [16], AWQ [33], and QLoRA [12] are the

recent weight quantization works. GPTQ quantizes weights

column by column using the Hessian matrix to compensate

the errors. AWQ scales weight channels by observing outliers

in activation tensors to reduce quantization errors. QLoRA in-

troduces the 4-bit NormalFloat datatype for block-wise weight

quantization by considering the distribution of values.

For quantization under architectural support, BitFusion [49]

proposes a bit-flexible architecture that can handle various

precisions. BiScaled-DNN [27] introduces a new fixed-point
(FxP) number format that employs two scale factors to repre-

sent values of small and large magnitudes in a tensor. While

it offers advantages over conventional FxP, the heuristic for

determining scale factors and the nature of its design would

not easily be applicable for a larger number of groups, unlike

Tender, which is crucial for language model performance. Its

element-wise metadata also leads to more intrusive changes

in conventional PEs. ANT [21] adaptively uses a variety of

datatypes, and OliVe [20] expresses outliers using specialized

datatype to reduce quantization errors. However, using custom

or mixed datatypes makes it challenging to be deployed for

commodity hardware. Compared to these works, Tender offers

a non-intrusive but effective solution while building on the

conventional number representation and datatype.

VIII. CONCLUSION

Emerging large language models (LLMs) show remarkable

model performance, but quantization for scalability is chal-

lenging due to the presence of outliers in the activation tensors.

In this paper, we present Tender, an algorithm-hardware co-

design that carefully considers both hardware performance

and quantization error. Tender minimizes quantization errors

by splitting the activation tensors along the feature/channel

dimension to separate the outlier channels from the others.

We address the runtime overhead of the channel decomposi-

tion by introducing implicit requantization with the support

of a minimally extended systolic array. Tender significantly

improves PTQ performance even for ultra low-bit quantization

without mixed-precision computation or custom datatypes.

This work opens new possibilities for easier and more efficient

deployment of LLMs in a variety of practical scenarios.
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