Tender: Accelerating Large Language Models via Tensor Decomposition and Runtime Requantization

Jungi Lee*, Wonbeom Lee*, Jaewoong Sim Seoul National University

* Equal Contribution

Outline

Motivation

- Challenges in Efficient LLM Inference
- Limitations of Prior Works
- Tender: Algorithm-Hardware Co-design for Efficient LLM Inference
 - Tensor Decomposition
 - Rescaling Operation
- Evaluation
- Conclusion

Challenges in LLM Inference

Challenges in LLM Inference

Challenges in LLM Inference

Channel

Channel

Performance of Per-column Quantization

Performance of Per-column Quantization

Mixed Precision

LLM.int8() [NeurIPS'22] OLAccel [ISCA'18] DRQ [ISCA'20]

Custom & Multiple Types

OliVe [ISCA'23]

Tender Overview

Outline

- Motivation
 - Challenges in Efficient LLM Inference
 - Limitations of Prior Works
- Tender: Algorithm-Hardware Co-design for Efficient LLM Inference
 - Tensor Decomposition
 - Rescaling Operation
- Evaluation
- Conclusion

Overcomes performance challenge of splitting channels in activations

Tender: Architecture Overview

Execution Controller

Column reordering

Multi-Scale Systolic Array (MSA)

Computation with Rescaling

Tender: Architecture Overview

Execution ControllerColumn reordering

Multi-Scale Systolic Array (MSA)

Computation with Rescaling

Output-stationary Dataflow

Outline

- Motivation
 - Challenges in Efficient LLM Inference
 - Limitations of Prior Works
- Tender: Algorithm-Hardware Co-design for Efficient LLM Inference
 - Tensor Decomposition
 - Rescaling Operation
- Evaluation
- Conclusion

Methodology

Models

• OPT, LLaMA, and Llama-2

Datasets

• WikiText-2 and Penn Treebank

Accuracy

• Hugging Face Library

Performance

- RTL: 28nm technology
- Cycle-level simulator

Baselines

	Accuracy
SmoothQuant	Column-wise scaling
ANT	Adaptive & Custom Types
OliVe	Adaptive & Custom Types
Pe	erformance
OLAccel	Input - Mixed Precision
ANT	Input - Exponent & Integer
OliVe	Input - Exponent & Integer

Quantization Results

Perplexity results using *WikiText-2* dataset

Precision	Scheme	OPT-66B	Llama-2-70B	
FP16	Base	9.34	3.32	
INT8	SmoothQuant	9.87	17.30	
	OliVe	9.43	50.94	Isolation of outliers
	Tender	9.43	3.48	

* Lower is better

Quantization Results

Perplexity results using *WikiText-2* dataset

Precision	Scheme	OPT-66B	Llama-2-70E
FP16	Base	9.34	3.32
INT8	SmoothQuant	9.87	17.30
	OliVe	9.43	50.94
	Tender	9.43	3.48
INT4	SmoothQuant	6E+4	7E+4
	OliVe	6E+3	99.91
	Tender	12.38	13.43

* Lower is better

Performance

LLM inference **speedup**

→ With higher accuracy, Tender achieves higher performance

More Details in Our Paper

- GPU Implementation of Tender
- Tender on weight-stationary dataflow

- Hardware support for reordering
- Comparison with BFP variants
 - MSFP and MX formats
- Area & Energy Efficiency
- Others...

Conclusion

Problem

- Outliers make an efficient serving of LLM challenging
- Complex and intrusive design of prior works

Solution: Tender, efficient low-bit integer-based LLM inference accelerator

- Tensor decomposition while considering accuracy and performance
- Rescaling only requires a 1-bit shifter and 1-cycle latency

Result

 Tender achieves up to an average of 2.6x speedup over the baseline with substantially higher accuracy ⁽²⁾

Thank You!

Tender

Accelerating Large Language Models via Tensor Decomposition And Runtime Requantization

Jungi Lee (jungi.lee@snu.ac.kr)

